

PORTABLE COMPUTER

HX-20

BASIC REFERENCE
MANUAL

NOTICE:

* All rights reserved. Reproduction of any part of this manual in-any form
whatsoever without EPSON’s express written permission is forbidden.

* The contents of this manual are subject to change without notice.

* All efforts have been made to ensure the accuracy of the contents of this manual.
However, should any errors be detected, EPSON would greatly appreciate being
informed of them.

* The above notwithstanding, EPSON can assume no responsibility for any errors
in this manual or their .consequences.

© Copyright 1982 by EPSON CORPORATION.
Nagano, Japan

'FOREWORD

The EPSON HX-20 Portable Computer is the ultimate in personal computers — a complete
desktop personal computer system miniaturized to fit in a briefcase. To take full advantage
of this portability, the hardware and software features listed below have been incorporated
in its design. o

This manual provides a detailed explanatlon of one of those features, the unique EPSON
developed BASIC, and it is hoped that the user will profitably use this volume as a reference
for programming as well as for further application software development. To these ends,

we have edited and prepared this manual with ease. of reference and use in mind.
-

Features

1. The RAMSs are backed up with batteries so that programmes and data stored in the RAM
are protected against loss even when the power switch is turned OFF. Programme
execution is possible upon power application.

2. The memory space is divided into five programme areas, each capable of storing a
separate BASIC programme. Each programme can be selected from the menu for
immediate execution.

3. The 5 programmes in the menu are managed independently, so that the creation of a
new programme or the editing of the existing programme does not affect other
programmes in the memory.

4. The HX-20 features an 80-character (20 char. by 4 lines) liquid crystal display (LCD). A
virtual screen for larger than the LCD screen can be specified by a WIDTH command and
the capacity to scroll freely in any of the four directions enables the user to perform
screen editing of the large internal screen beyond the physical limitations of the LCD.

5. All operations of the optional microcassette drive can be controlled under BASIC.

6. In addition to the programme areas, the HX-20 is provided with a RAM file area to
facilitate data storage, as well as data transfer between programmes.

7. By connecting an optional TF-20X terminal floppy unit to the HX-20, DISK BASIC can be
run.

TABLE OF CONTENTS

Chapter 1 Introduction to HX-20

1.1 Initialisation and BASICcooiiiiiii e 1-1
1.2 Operation of keyboard ..o 1-6
1.3 Textand graphiC SCrEENScccceiivviiiniiie e 1-10
1.4 Textscreen (Virtual SCrEEN)cc.ourviivieeiiie e 1-12
T8 SCIEEN @aIT ...eeii e 1-14 ;
1.6 File OPEratioNScoociiiiiiiii et e 1-16
1.7 Peripheral @Quipmentcoccociiiiiiieiee e 1-18
Chapter2 Outline of EPSON BASIC

2.7 OPperation MOUES ..ottt et e s 2-1
2.2 StAtBMENTS ..ot 2-2
2.3 LINES et 2-2
2.4 CRaraCter SBLcciviiiiieiee ettt 2-2
2.5 CONSTANTS ...ttt et 2-3
2.8 VaNablescoiiriiitieee ettt 2-4
2.7 TYPE CONVEISIONoiiiiiiiiiiiiiiiiieie et ctee ettt ettt 25
2.8 Expressions and OPerationscocvvviriuicoeiiieeeee ettt 2-6
2.9 EIMOrMESSAGES ...ooeiiieiiiii ettt ettt 2-11
2.10 DIP SWItCh SETHNG ..vecveivieiiiiiirieit et 2-12
How to use Chapters 3and 4oceoioevieieeceeeieeee e 2-13

Chapter3 Commands and Statements -
Chapter4 Functions

Chapter5 Additional information

BT RAMITIES oot 51

5.2 Sequential fileSco.ooii it 55

5.3 Machine [anguage ProgramMESsc.ocooeeveemeeeeeeeee et seeeseeee e 59

5.4 How to use the RS-232C POItc.ocviuiviieie oot 5-14
APPENDIXES

A. Error Messages

B. Device Names ‘

C. Correspondence Tabie between Device Names and EPSON BASIC Commands :

D. Formatting Characters

E. Keyboard Layouts and Key assignments :*

F. Character Code Tables 5‘

G. Control Codes vl

H. Memory Map

I. Table of Reserved Words

J. Listof Commands and Statements

Commands and Statements

AUTO e 3-1 MEMSET oot 3-37
CLEAR e 32 MERGE i 3-38
CLOSE e 3-3 MERGE“COMO:" i 3-38
CLS e 33 MIDS oo 3-39
COLOR e, 34 MON e, 3-40
CONT e 35 MOTOR e 3-41
COPY e 3-5 NEW e 342
DATA e 3-7 ON ERROR GOTO .ooeeiiiieiieiiicees 342
DEFFIL oo 3-8 ON...GOSUB/ON...GOTO ..o 3-44
DEFFN oo 39 OPEN e 3-45
DEFINT/SNG/DBL/STR v 3-10 | OPEN"COMO:" ..ol 3-46
DEFUSR oo 3-12 | OPTIONBASE oo 3-48
DELETE oo 313 | PCOPY oo 349
DIM 314 { POKE oo 3-50
END oo 3-14 | PRESET oo 3-52
ERASE o 3-15 | PRINT/LPRINT i 3-53
ERBOR oo 3-16 | PRINT USING/LPRINT USING 354
EXEC oo 317 | PRINT#H e - 3-68
FILES oo 318 | PRINT#USING ... 3-58
FOR..TO..STEP - NEXT ... 3-19 | PSET oo 3-59
GCLS e 321 | PUT% oo 3-60
GETY0 oo 321 | BANDOMIZEcoociiiiiiiie s 3-61
GOSUB -~ RETURN ... 322 | READ oo 3-61
GO TO/GOTO i 323 | REM i 3-62
IF..THEN...ELSE/ RENUM i 3-62
IF...GOTO...ELSE ..o, 324 | BESTORE ..o 3-63
INPUT e 325 | RESUME ..ot 3-64
INPUT# e 326 | BUN e, ... 3-65
KEY oo 3-26 | RUN“COMO:" e 3-65
KEY LIST/KEY LLIST oo 3-27 | SAVE e 3-66
LET e 3-27 | SAVE"COMO:” i, 3-67
LINE oot 328 | SAVEM i 3-67
LINE INPUT e e 3-29 | SCREEN ..o 3-68
LINE INPUT# oo 3-30 | SCROLL oo 3-69
LIST/LLIST i 330 | SOUND .o 3-70
LIST<file descriptor>ccccoceeviiiis 331 | STAT oo, 3-71
LIST"COMO:" i 331 | STOP i 372
LOAD oo 332 | SWAP e 3-72
LOAD"COMO:" oo 332 | TITLE e 373
LOADM e 3-33 | TRON/TROFF i 374
LOAD? oo 334 | WIDTH oo 375
LOCATE oot 3-35 | WIDTH<device name>cco...... 3-76
LOCATES . 336 | WIND oo, 3-77
LOGIN oo 3-36

Functions

ABS 4-1 LOF e, 4-15
ASC i 4-1 LOG e, 4-15
ATN e 4-2 MIDS o 4-16
CDBL o 4-2 OCTS e, 4-17
CHRS 4-3 PEEK e 4-17
CINT i 4-3 POINT e, 4-18
COS i 4-4 POS e, 4-19
CSNG i 4-4 RIGHTS oo 4-19
CSRLIN i 4-5 RND o, 4-20
DATES i, 45 | SGN 4-21
DAY oot 4-6 | SIN L, 4-21
EOF i 46 | SPACES ... 4-22
ERL/ERR oo 4-7 SPC e 4-22
EXP oo 4-7 SOR 4-23
FIX e 4-8 | STRE o 4-23
FRE e 4-8 STRINGS ..o, 4-24
HEXS oo 49 L TAB 4-25
INKEYS e 4-10 | TAN L 4-25
INPUTS e 4-171 | TAPCNT 4-26
INSTR o 4-12 1 TIMES o 4-27
INT e 4-13 | USR . 4-27
LEFTS e 4-14 | VAL i, 4-28
LEN e 4-14 | VARPTR ., 4-28

CHAPTER 1 |
Introduction to HX-20

1.1 Initialisation and BASIC

Unlike other personal computers, the memory space of your HX-20 Portable Computer is
divided into 5 programme areas where 5 BASIC programmes can be stored independently.
These programmes will be retained in the memory without any change even if you turn
OFF the power switch of the HX-20. The HX-20 incorporates a menu function to enable any
of the stored programmes to be executed with a single-touch key operation. Turn ON the
power switch, and the menu will appear on the LCD screen as follows.

The menu displays numbers and the functions (i.e., programme names) which can be
executed when you press the corresponding numeric keys. When power is applied to the
HX-20 for the first time, only two functions will appear on the LCD screen as shown above.
"CTRU/@" at the uppermost line of the display indicates that you must press the key
while holding down the key.

NOTE:

If you select a character set other than that for USA, England, Italy or Spain, the following
symbols will appear in lieu of “@".

USA France Germany Sweden
@ 3 § E

The character code and function of each of these keys is the same as “@” and the
corresponding character for each character set should be pressed while holding down
(118 key. (See Section 2.4, Character Sets, for details.)

1-1

If you do this followed by the date and time setting described later, your HX-20 will be
initialised. This state is called “cold start”. (You must initialise your HX-20 by cold start
when you turn ON the power switch for the first time after purchase.) To execute EPSON
BASIC, press numeric key “2".

EPSON BASIC U-1.08
Cordrisht 2 by
Microsoft & EPSON
Ei: @ Buytes

When BASIC is executed, the programme area No. 1 is always selected. The message “0
Bytes” following “P1:” indicates the length of the programme stored in the current
programme area. In this case, as no programme has been stored in program area No. 1, the
value displayed is “0” bytes.

1.1.1 Menu

If you name a programme that you have written in BASIC with a TITLE command, the
programme name will appear in the menu on the display. This means that the programme
name has been registered in the menu.

5 programmes registered in the menu are numbered 3 through 7, respectively. Any of
these programmes will be executed directly (without using LOGIN and RUN commands)
whenever you press the numeric key corresponding to the programme number.

1-2

When you call the menu after all the programme names have been registered, the screen
will scroll up to show you the programme names gradually as all the programme names
cannot be displayed at one time in the LCD display window. After the display of all the
programme names, it will then return to the first name ”1 MONITOR", indicating that the
HX-20 system has returned to command level. If you press key at this moment,
the current display is switched with the display outside the physical screen to show you the
remaining programme names. Pressing key wili return the display to the initial
screen. If you press and keys, the screen will move backwards.

BASIC

PRIOG. 1

PF:G. z
15

SC : RN W& RETURN B39

NOTE:

The numbers assigned to the programmes are used only for menu display and the K
command of the MONITOR, and have no direct connection with the programme area
numbers used by a LOGIN command. Also, these numbers may change. upon registration
of other programmes in the menu.

The K command of the MONITOR makes the HX-20 ready for direct programme execution
without requiring any other operation immediately after the power switch is turned ON.

1.1.2 Cold start

When [N key and “@" key are pressed while the menu is being displayed, the HX-20
will ask you to input the date and time.

Enter DATE and TIME
~MMDDYPHHMMS St

ﬁress BREAK +o abort

At this point, if you type the current date in the format “MMDDYY" {month, day and year)
and the current time in the format “HHMMSS"” (hours, minutes and seconds) in 12 digits
(24-hour system), and then press key, the HX-20 will be initialised. This state is
called “cold start”. You can correct the time setting by pressing [key. When the HX-20 is
initialised by cold start, all the memory contents of the HX-20 are cleared and the respective
constants in BASIC are reset as follows. (For details, refer to the applicable chapters.)

CLEAR 200,256
MEMSET &HOA3F

KEY 9, "TITLE”

, "LOGIN"

KEY 1, "AUTO"
KEY 2, “LIST" + CHR$(13)
KEY 3, “LLIST" + CHR$(13)
KEY 4, “STAT”
KEY 5, “RUN" + CHRS$(13)
KEY 6, “?DATE$:?TIME$” + CHR$(13)
KEY 7, "LOAD"
KEY 8, “SAVE”"
9
0

As previously described, when the HX-20 is cold started, all the data currently stored in the
HX-20 memory are cleared. So please be careful not to cold start your HX-20 unnecessarily.
If you accidentally press and keys, do not set the date and time but press
or key. This will cause the HX-20 to return to the menu display again.

1-4

1.1.3 Warm start

All the execution of BASIC by other than the cold start is called “warm start”. When the
HX-20 is initialised by warm start, the respective constants in BASIC are reset as follows.
(These are called “default values after warm start”.)

CLEAR 200
SCREEN 0,0
SCROLL 9,0,10,4
WIDTH 40,8,3
SCROLL 9,0,16,16
WIDTH 40,37,6

} LCD

} External display

If you press key even during the execution of a BASIC programme, BASIC will
enter the warm start state. Therefore, please note that while you are operating the HX-20,
for example, to change the screen size, the default values will be assumed after the menu
has been displayed by pressing key. (The size of the external display, however, will
not be affected by warm start.

1.1.4 Reset

There is a RESET switch, recessed at the rear of the right-hand side of your HX-20. This
switch need not be operated during normal BASIC operation. Never use the RESET switch
except in the circumstances as described below. The only times when you must operate
the RESET switch are those cases where the HX-20 does not respond to key and
the POWER switch (as a result of a programme overrun). In the HX-20, a programme
overrun will never occur unless the HX-20 is operated incorrectly as follows.

® Data rewrite in the system area (memory addresses &H004D to &HOA3F)

® Attempt to read the data in the /O area {memory addresses &HO0000 to
&H004D). .

® Execution of an incompletely written machine language programme.

If a programme overrun should occur as a result of one of these operations, turn the
POWER switch OFF immediately and then press the RESET switch.

When you attempt to execute BASIC after depressing the RESET switch, there may be a
case where part of the memory has been rewritten due to overrun. In such a case, the
menu display is disrupted, and your attempts to execute BASIC are not successful. Should
this happen, you must initialise the HX-20 by cold start to clear all the memory contents of
the HX-20. Before executing an incompletely written machine language programme,
always save the data and programmes in the memory to a cassette tape or other external
memory so that even if the memory should be erased, no problem will occur.

15

NOTE:

While you are operating the HX-20, there may be a case where the message “CHARGE
BATTERY!” will suddenly appear on the LCD screen. If this happens, all the HX-20
operations will be suspended and the HX-20 will not accept any inputs. This is a warning
message to tell you that the battery voltage is low. If the battery voltage of the HX-20 falls
below a certain level, the HX-20 will stop its operation to protect the programmes and data
in the memory. If this message appears, turn the power switch OFF and recharge the
batteries as soon as possible.

1.2 Operation of keyboard

The keyboard arrangement of the HX-20 is as shown below.

89909000000000000

PRINTER
OFF _on

PAUSE

NOTE:
The keyboard arrangement shown above applies to that for U.S.A. Refer to APPENDIXE for

England Keyboard.

1-6

1.2.1 Keyboard modes

The HX-20 has three modes for the input of characters. The characters that can be input in
each of these modes is different.

M

(2

-~

Q)

Uppercase Mode

In this mode, the normal keyboard input is uppercase characters. For example, by
pressing the key marked “A” on the keyboard, the character “A” will be input. If this
key is pressed while holding down key, lowercase "a” will be input. For the
numeric and symbolic keys, the number or symbol appearing on the lower half of the
key will normally be input and the number or symbol on the upper haif of the key will be
input when the key is pressed while holding down key.

For example, when n key is pressed in the uppercase mode, “:” is normally input and
“*" is input if this key is pressed while holding down key. The uppercase mode
is the default mode and the HX-20 is set in this mode every time BASIC is executed.
Lowercase Mode

The HX-20 enters this mode when the key marked @ is pressed. In this mode,
lowercase letters are normally input and uppercase letters are input by pressing a letter
key while holding down key. The function of the numeric and the symbolic keys
is the same as in the uppercase mode.

Numeric Mode

The HX-20 enters the numeric mode when the key is pressed. The keys which
can be operated in this mode are the numeric keys at the top of the keyboard and the
letter keys which have the numbers 0 to 6 written in their upper right-hand corner as
well as the symbolic keys (+), (=), (), {(/), (.}, {,) and (?). All other keys will be
ineffective even if you press them. For the characters assigned for each mode, refer to
APPENDIX E, “Key Assignments for Each Keyboard Mode”.

You can change the mode by pressing one of the keyboard mode keys. However, if you
press the key for the mode which the HX-20 is currently in, the keyboard mode will return
to the uppercase mode. An example of changing key modes is shown below.

Keys marked 1

is pushed. is pushed. is pushed.

in the Figure on page 1-6 are special tunction keys and can be input in

any mode.

1.2.2 Input of graphic characters

Graphic characters can be input in the uppercase mode by pressing the respective keys
white holding down the [elildill key. For details, refer to APPENDIX E, “Key Assignment for
Each Keyboard Mode".

I
i

1.2.3 Special functions of CONTROL key

key, when used in conjunction with other keys, inputs control codes that perform
the special functions such as the movement of the cursor on the screen, etc. (For details of
these control codes, see APPENDIX G.)

In addition, key has two special functions.

CTRL g3

CTRL B3

PF6

Copies the data displayed on the LCD on the built-in microprinter. This
function is the same as a COPY command execution.

Sets the optional microcassette drive in manual operation mode. This
mode will not be entered if the microcassette is not connected. When
the manual operation mode is entered, the display is extinguished and
the tape counter value is displayed in the upper right-hand corner of
the physical screen. In the manual operation mode, the microcassette
operations can be controlled by the programmabile function keys
to & as follows.

Fast forward.

Slow forward.

Stops the tape rewind, fast forward or slow forward.

Rewinds the tape.

Causes exit from manual operation mode.

Resets the tape counter value.
(PF6 is input by pressing while holding down HilER key.)

1.2.4 Functions of special keys

PAUSE

MENU

Used to feed paper into the the built-in microprinter.

Used to temporarily stop the programme execution and listing. The
interrupted operation is resumed upon pressing any other key on the
keyboard. In this case, if one of the numeric keys O through 9 is
pressed to resume execution, the scrolling speed can be specified.

Used to return the HX-20 to the state prior to BASIC execution. The
menu is displayed and the HX-20 waits for input of your selected
function.

BREAK
| PF1 8 PF5 |
| PF6 B PF10
RETURN

GRPH

B =
SC : RN

Used to stop programme execution or listing. Programme execution
can be resumed by input of a CONT command.

You can define the special functions by software in these keys. (For
details, see KEY command in Chapter 3.)

Used to signal BASIC that input of data in the required units has been
completed. When this key is pressed, the cursor moves to the
beginning of the next line.

These keys are used to select the keyboard mode.

These keys are used for screen editing. For details of each key, refer
to Section 1.5.

For the built-in microprinter, there is a EEIVITICINICIEA switch and a B key. The
microprinter can only be operated when the [HAIRISHOINIOIFE switch is in the ON
position. For example, even if you execute an LLIST statement or press the key, if the

R ESINIEIEE switch is OFF, the microprinter wili not function. The BBBlkey will feed
the roll paper into the feed only while it is being pressed.

1.2.5 Auto-repeat function

If the alphanumeric keys are pressed continuously, they have a function to automatically
input continuously. In addition, the following special keys have the same function.

SC : RN

-] - | RETURN

1.3 Text and graphic screens

The HX-20 has two distinct screens that you may use for the entirely different purposes.
The first screen called a “text screen” is to display characters and the second called a
“graphic screen” is used to draw graphics using such statements as LINE and PSET. These
two screens can be output through two different output devices; one is the built-in LCD
and the other is an optional external display.

In EPSON BASIC, with a SCREEN statement, you can specify three different methods of
display by combining the two screen modes and the two output devices. When BASIC is
executed, both the text screen and graphic screen are specified for display on the LCD.

10 P=3. 141592630
28 FOR 1=0 TO 119 |
38 PSETCI, 16+SINCPHI| i

When you want to draw lines and dots on the graphic screen, you must use rectangular
coordinates with the upper left-hand corner of the display as the origin. The value of a
horizontal coordinate increases as a point on the X-axis moves towards the right, while the
value of a vertical coordinate increases as a point on the Y-axis moves downwards.
The range of coordinates for the LCD is different from that for the external display. Also, for
the external display, the range of coordinates varies depending on the selected display
mode. In a LINE or PSET statement, the HX-20 does not check to see whether or not the
specified coordinates are actually within the screen. Please pay special attention to the
range of coordinates.

Mode i
L.CD 120 32
External display 4-colour 128 64
High resolution 128 96

NOTE:
The above table indicates the resolution of each display and does not indicate the range of

coordinates. For example, the LCD has a resolution of 120x32 dots. But the specified
values of coordinates must be in the range of 0 to 119 horizontally and 0 to 31 vertically.

When the external display is set in 4-colour graphic mode, the resolution of the display is 64
dots vertically. But the range of coordinates that you can specify is between 0 and 96,
which is the same as that in high resolution mode. In other words, the values of your
specified coordinates do not correspond to the dots on the screen.

Value of coordinates Positions on screen

e

(0. 2) ©. 1
P ———
©. 4 ©.2

(0, 5) (©, 3)

Assume that the value of the vertical coordinate to be specified is N and the vertical

position on the screen is V.
The relationship between these two can be expressed by the following formula.

V = 2N\3 (“\" indicates integer division.)

1.4 Text screen (virtual screen)

The LCD screen of the HX-20 is capable of displaying only 80 characters (20 characters x4
lines) at one time. However, by moving the cursor, a new screen may appear one after
another. You can operate the HX-20 as if you are using a large screen..

This is because the HX-20 has adopted the concept of a “virtual screen”. Let's suppose
there is a very large screen inside the HX-20. Commands such as LIST, PRINT are all output
to this internal screen. Now, assume the LCD display as a “viewing window” that allows
you to see only a part of the internal screen. This “viewing window” can be moved
anywhere on the large internal screen. It cannot, however, leave the bounds of the internal
screen. The same concept of a “virtual screen” also applies to the external display. The
only difference is that the size of the “window” through which you can see is larger than
that of the LCD’s window. As compared with the virtual screen, this “window"” on both the
LCD and external display is called the “physical screen”.

Thanks to this virtual screen, you can see statements which were previously input or output
by moving the physical screen. However, if the virtual screen becomes full of data, the
screen will be scrolled up by one line for the next display and thus you cannot see the line
overflowed from the virtual screen by moving the physical screen.

LCD
20 characters X
4lines

Physical
screen

The size of the virtual screen can be specified by a WIDTH command. You can specify the
size of the virtual screen freely within the range of 255 characters per line or 255 lines,
subject to the limitations imposed by the capacity of the memory. (On the external display,
the maximum screen size is 40 characters by 37 lines {i.e., 1,480 characters in total). If too
large a virtual screen is specified, the available programme area will be restricted. With this
in mind, specify the size of the virtual screen as required.

The virtual screen is valid for only the text screen and the size of the graphic screen is fixed.

1.5 Screen edit

EPSON BASIC has a screen edit function to facilitate programme editing. Using this
function, a text or programme line being displayed on the screen can be corrected. The
corrected text or programme line can be entered into the programme by pressing
key. In other words, you can edit a programme that has already been input and
stored in the memory according to the following procedure.

(1) Display the programme to be edited using a LIST command.
(2) Make necessary corrections by moving the cursor.

(3) Press IANVGEIM key.

To enter a text into BASIC, you must first press key to inform BASIC of the input
of the text. BASIC will ignore any and all characters or symbols entered until you press
key. When key is pressed, BASIC pays attention to only the text
being displayed on the line where the cursor is located. For this reason, BASIC makes no
distinction between the text called by a LIST statement and the previously entered text or
the one displayed by just typing.

The “line where the cursor is located” is not limited to one line currently bemg displayed on
the screen but refers to a text which is continuously typed from the keyboard and dces not
exceed a maximum of 255 characters in length. BASIC regards a text written over plural
lines as a "logical single line”. Wherever the cursor is positioned on the “logical single line”
when key is pressed, that line will be input up to its end. When the line on the
screen is shorter than the logical single line, you sometimes cannot judge by merely looking
at the screen whether the text displayed is part of the logical single line or not.
Please pay attention to this point.

1.5.1 Moving the cursor
The following keys are used to freely move the cursor alone during programme editing.

TAB Moves the cursor to the next TAB position. {Every 8 columns.)
.| Moves the cursor one position to the left.
EN Moves the cursor one position to the right.

SHIFT B3 Moves the cursor up one line.

ildd + B Moves the cursor down one line.

If the cursor at either end of the physical screen moves out of the physical screen as a
result of any cursor movement key operation, the physical screen automatically moves
within the virtual screen. In this way, the cursor will be prevented from leaving the physical
screen. Also, when warm started, BASIC automatically sets the “scroll margin” to 3. This
means that when the cursor reaches the 3rd position from either end of the physical
screen, the physical screen will move with the margin left on either end. The scroll margin
can be specified with a WIDTH statement.

If the cursor is at either end of a line on the virtual screen, any attempt to move the cursor in
that direction will cause it to move to the next (or the preceding) line. The display will, of
course, follow any such cursor movement. However, the text advanced to a new line in this
way by one of the cursor movement keys will not be considered to be a logical single line.
The cursor cannot be moved beyond the upper left- or lower right-hand corner of the virtual
screen.

1.5.2 Moving the physical screen

CTRL JEEA Moves the physical screen to the left corner of the virtual screen.
[N - F Moves the physical screen to the right corner of the virtual screen.

CTRL 3 or Moves the physical screen to the left by the specified number of
CTRL JEaS columns.

CTRL 3 or Moves the physical screen to the right by the specified number of
CTRL JES») columns.

SC : RN JNelg)

S + P Moves the physical screen up by the specified number of lines.
SHIFT B4 SC : RN

or M + Q Moves the physical screen down by the specified number of lines.

These scroll steps are set at the following values when BASIC is warm started: for the
LCD, four lines vertically and 10 columns horizontally and for the external display, 16 lines
vertically and 16 columns vertically.

The scroll steps setting can be changed using a SCROLL command. The movement of the
physical screen differs from that of the cursor. Namely, when the physical screen reaches
either end of the virtual screen, it stops there and will move no further.

SLIAR + Bl or Moves the cursor to its home position which is the upper left-hand
21N + K corner of the virtual screen.

1.5.3 Insertion and deletion

When correcting a text being displayed on the screen, the character at the cursor position
can be changed by typing another character or symbol over it. However, for major
corrections, the following key operations are used.

+ B8 or Upon pressing these keys, the HX-20 enters the insert mode. Any

+ R characters typed after this operation will be inserted to the left of the
cursor position and the characters to the right of the cursor will move
as the cursor moves. This mode continues until you press
key, any of the cursor movement keys, or key.

or The characters immediately to the left of the cursor position are
N + H deleted and the cursor moves to the left.

Mistypes are normally corrected by this operation.

[N + E All the characters to the right of the cursor position on the line where
the cursor is currently positioned are deleted. In this case, the cursor
does not move.

CTRL IFv4 All the characters from the line where the cursor is currently
positioned to the bottom line of the virtual screen are deleted. In this
case, the cursor does not move.

or Deletes all the characters on the virtual screen and returns the cursor

N + L to its home position.

1.6 File operations

A collection of information is referred to as a “Record” and a collection of records, as a
“File”. In EPSON BASIC, I/O transfer to and from peripheral devices is performed in units of
one record and I/O data is managed in units of one file.

In EPSON BASIC, a special RAM file area is provided.

GET% and PUT% statements can read and write RAM files for efficient data storage and
i/O transfer.

1.6.1 File numbers

To enhance the efficiency of /O, the HX-20 has a special area called "Buffer” in the
memory in which records are temporarily stored. The individual numbers assigned to the
locations in the buffer area are called “File Numbers”. These file numbers are used to
access the files.

Each file number must be an integer in the range of 1 to 16.

1.6.2 File descriptors

As the concept of “File” has been adopted for all I/O devices, all I/O operations can be
effected by standardized commands. Distinction of one /O device from another is made by
a "file descriptor” which is a string consisting of the following elements.

" <device name>:[<filename>}"

A file descriptor must always be enclosed in double quotation marks.

1.6.3 Device names

<device name> indicates the name of an I/O device and is represented as a rule by a string
of either 4 alphabetic characters or of 3 alphabetic characters and 1 numeric character,
followed by a colon. The following device names are defined in EPSON BASIC.

Device name Device input | Output Remarks
KYBD: Keyboard @) X
SCRN: Screen X 0,
LPTO: Built-in microprinter X O
COMO: RS-232C port O O
CASO: Microcassette O O Option
CAS1: Audio cassette O O
PACO: ROM cartridge @] X Option
A: Flexible disk drive A O O Device
B: Flexible disk drive B @] O names used
C: Flexible disk drive C O @] in
D: Flexible disk drive D O @] DISK BASIC
O: Applicable x: Not applicable

|f device name is omitted, EPSON BASIC automatically checks the peripheral equipment
connected to the HX-20. If a microcassette drive or a ROM cartridge is connected, BASIC
gives precedence to these devices over the audio cassette. If none of these devices is
connected, the audio cassette is set. The device set when device name is omitted is called

the “default device”.

1.6.4 Filenames

<filename> is the name given to each file by the user. No filename can be omitted if i/O
data transfer is to be performed between the HX-20 and another auxiliary memory unit such
as a cassette or ROM cartridge. In other cases, it can be omitted.

The filename must be used in the following format.
<filename>|[.[<filetype>]]

The first <filename> consists of an 8-character string and <filetype> foliowing a period
consists of a string of 3 characters. Any characters other than colons, periods, brackets, and
character codes 0 and 255 can be used as <filename> and <filetype>.

Usually, <filename> indicates the name of a file and <filetype>, its attribute. This,
however, is left to the discretion of the user. <filetype> is normally included in any
reference to <filename>.

If you specify a filename exceeding 8 characters or a filetype exceeding 3 characters, an
“FD" error occurs.

1.7 Peripheral equipment

The concept of “File” has been adopted to handle the I/O operation between the HX-20 and
all peripheral devices and for this reason, use of standardized commands is effective for
almost all the devices.

The following table shows the basic commands and statements for handling files and the
devices for which the respective commands and statements are valid.

Device | KYBD: | SCRN: | LPTO: | COMO: | CASO: | CAS1T: | PACO:
Comman
LOAD
.OADM
LOAD?
RUN “<file
descriptor>"
MERGE
FILES
INPUT#
INPUTS
EQF
LOF

SAVE

SAVEM

LIST

PRINT# (USING)
POS

OPEN mode

X X X X
X X X X
X X X X

I OO0 X X
F O0O000 0000

I O0000 0O0O0O0

O0O0OXO|0O0O0OX0O OxxO

10000
0000

—Ixxxxx{O0O0OOO0OO OxX0O0

— X x X X X
OlO00O X Ofx x x x X X
OO0 O X Ol%x X X X X X

S
5
)

NOTE:
O or X in this table indicates that when a device is specified for a command or statement,

the device

O: Can be used.
x: Cannot be used. An FC error occurs.
—: Causes no error but the command is invalid.

Refer to Chapter 3 for each command or statement.

1.7.1 Screen

If a file output device is specified as "SCRN:" (screen), it refers to either the LCD or
external display which has been specified by a SCREEN command for text screen display.
Characters to be output are actually written on the virtual screen and the screen that you
can see at a time is limited by the display capacity of the LCD (of extemal display). Pay
adequate attention to the output allocation and output speed.

The screen can also be used for programme debugging. When data is output on cassette or
disk file, you will need a separate programme to check the data for correct output. In such a
case, by changing the device name in the OPEN statement to “SCRN:”, you can confirm
visually the output data. ’

1.7.2 Printer

With the HX-20, you can use two types of printers. The first is the built-in microprinter
which you must specify as “LPTO0:". The other is an external printer connected to the
HX-20 through the RS-232C interface, which you must specify as “COMO:”".

As you may use the built-in microprinter more frequently, the following special output
commands are provided in addition to the general output commands.

LPRINT, LPRINT USING
LLIST

KEY LLIST

COPY

By using a WIDTH<device name> command, you can also specify the print width. In this
way, your design of output format can be greatly simplified.

1.7.3 Cassette
With BASIC, you can use two types of cassettes as auxiliary memory units.

“CAS1:"

Using a commercially available audio cassette, you can SAVE and LOAD programmes and
data freely. When loading programmes with a LOAD command, or when a file is opened for
input, specify the filename and the tape will be automatically searched for that file.

While executing a LOAD or OPEN command in the direct mode, the following message is
displayed on the LCD screen each time a file other than the specified file is searched.

Skip: <filename>
When the specified file is found, the following message appears on the LCD screen.
Found: <filename>

Also, a LOAD? command may be used to skip the specified file. For further details, see
LOAD? command in Chapter 3.

“CASO:”

This device name indicates the optional microcassette drive. “CASO” can be used in the
same manner as “CAS1:”. You can SAVE, LOAD, VERIFY or SEARCH the files using the
built-in counter and executing a WIND command.

1.7.4 RS-232C port

Communications with external devices are regarded as most important in EPSON BASIC.
For this reason, the RS-232C port is designed to aliow programming in BASIC to set the
conditions for communication not only with the external printer, but also with ali other
external devices. These conditions can be specified not only by an OPEN command, but
also by the following commands.

LOAD
LIST
SAVE
RUN
MERGE

For further details, see Chapters 3 and 5.

1.7.5 ROM cartridge (option)

You can use the optional ROM cartridge by specifying the device name as “PACO:". Except
that the ROM cartridge is used exclusively for input and that file loading can be
accomplished in a much shorter time, it can be used in essentially the same manner as the
microcassette drive. For these reasons, this device is extremely useful when you handle
special programmes and/or data.

1-20

CHAPTER 2 |
Outline of EPSON BASIC

2.1 Operation modes

When BASIC is started up, your HX-20 displays the prompt sign “>" following the opening
message. The prompt sign tells you that the HX-20 is now in command level, that is, an
await state for command input.

If you input a programme statement written in accordance with the syntax established for
BASIC but without line number, the statement is executed immediately upon pressing
key. This type of programme execution is called “execution in the direct mode”.
Almost all BASIC commands and statements can be executed in the direct mode. The
exceptions are those statements listed below.

INPUT

LINE INPUT
INPUT#

LINE INPUT#
RANDOMIZE

If you input a statement preceded by a line number (ranging from 0 to 63999}, that
statement and the line number are stored together in the memory as a program. The stored
programme can then be executed by either a RUN command or a GOTO or GOSUB
statement. This type of execution is called “execution in the program mode”.

When a programme is executed by a RUN command, all variables (numeric, string and array
variables and other defined statements) are cleared prior to execution. In contrast, a GOTO
statement executes a programme without changing the current values of all variables.

2-1

2.2 Statements

A programme statement is a description of any of expressions, commands, statements,
functions, etc., which is executed by BASIC. More than one statement can be specified by
connecting them with a colon. These connected statements are called “multiple
statements”.

2.3 Lines

A programme line of BASIC always begins with a line number (represented by an integer in
the range of 0 to 63999), followed by one or more statements and ends with a carriage
return. A programme line can contain a maximum of 255 characters. Line numbers show
the order in which the programme lines are stored in memory. Programme execution
likewise follows this order starting from the lowest-numbered line. Line numbers are also
used to access programmes for branching and editing. A full stop may be used instead of
the line number after commands such as LIST and AUTO to instruct BASIC to operate on
the last line, e.g., the line in which an error has occurred during programme execution or the
last line input in the programme.

Examples: LIST.
AUTO.

2.4 Character set

The character set which can be used in BASIC consists of alphabetic (uppercase and
lowercase) characters, numeric characters (0 to 9), special symbols and graphic characters.
There are also a set of special control characters that perform-the special functions as
defined by their codes.

For details of these characters, see APPENDIX F, “Character Code Table” and APPENDIX
G, "Control codes”.

Also see section 2.10, DIP switch setting, and POKE command in Chapter 3 for character
set selection.

2.5 Constants

Constants are values which are used by EPSON BASIC without any change for programme
execution. The following types of constants are used in EPSON BASIC.

String
constants i
- Decimal type
Constants Integer type — Octal type
— Hex type
Numeric
constants
___Single precision
Real number | type
type | Double precision
type

2.5.1 String constants

A string constant is a sequence of up to 255 alphanumeric characters and symbols
enclosed in double guotation marks (”).

Examples: “HX-20"
- “Program-1"

Double gquotation marks and control codes cannot be included in string constants. Use the
CHR$ function to handle these marks and codes as characters.

2.5.2 Integer type numeric constants

(1) Decimal type
Whole numbers between —32768 to 32767 or numbers followed by the “%" sign. A
decimal point cannot be suffixed to these numbers.

Examples: 12345
—9999
45678%
Octal type
Octal numbers 0 to 7, prefixed by “&0” or “&”".
Octal numbers are in the range of &0 to &177777.

[S)

Examples: &0123
&77777
(3) Hex type
Hexadecimal numbers 0 to F, prefixed by "&H". Hex numbers are in the range of &H0
to &HFFFF.

Examples: &H1F
&HABCD

2.5.3 Single precision type real numbers

Single precision constants are stored in 7 significant digits. Six of the 7 significant digits are
displayed after rounding off the 7th digit.

A single precision constant is any numeric constant that has:

(1) seven or fewer digits, or

(2) exponential form using E, or

(3) a trailing exclamation mark (!).

Examples: 12345.6
—5E-38
234.5!

2.5.4 Double precision type real numbers

Double precision constants are stored in precision of 16 significant digits. Up to 16
significant digits are displayed.

A double precision constant is any numeric constant that has:

(1) eight or more digits, or

(2) exponential form using D, or

(3) a trailing number sign (#).

Examples: 3.141592653
—-1.23 D 22
888.8#

2.6 Variables

Variables are a kind of location to take the values used in BASIC programmes. Each variable
corresponds to a variable name consisting of alphanumeric characters.

if a numeric variable is referenced before a value is assigned to it, 0 is assigned as a
numeric value. For a string variable, a null string, that is, a string of length 0, is assigned as a
string value.

2.6.1 Variable names and declaration characters

(1) A variable name is represented by a sequence of up to 255 characters beginning with
an alphabetic character. Only the first 16 characters of a name are identified.
A variable name can contain a reserved word but cannot begin with a reserved word.
(Reserved words are keywords such as commands, statements and functions.)
Variable names starting with alphabetic characters “FN” are not allowed.
In variable names, capitals and lowercase letters are regarded as the same.

2-4

(2)

Variable types are determined by type declaration characters. A declaration character
written as the last character of a variable name declares the type of the variable. If a
declaration character is omitted, the variable type is assumed as a single precision type
real number.

(3) BASIC distinguishes different variable types under the same variable name.

Type declaration characters

% Integer variable

| Single precision variable
Double precision variable
$ String variable

2.6.2 Array variables

An array refers to a variable whose several elements can be referenced by one variable
name. Each element in the array is referenced by an “array variable” that is subscripted by
integer notation. The dimensions of an array variable and the maximum value of a subscript
depend on the capacity of the memory. (See DIM in Chapter 3))

2.7 Type conversion

When necessary, EPSON BASIC automatically converts a numeric constant from one type
to another.

(1)

()

If you assign a numeric data of one type to a numeric variable of another type, the
numeric constant is converted to and stored as the type declared in the variable name.
If you attempt to assign a numeric variable to a string variable or vice versa, a "Type
mismatch” error occurs.
Example: A%=32.34

In this example, 32 will be stored in A%.
During expression evaluation, all of the operands in an arithmetic or relational operation
are converted, and their results are returned to the same degree of precision of the
most precise operand.

Examples: 10#/3
10#/3#

The above two expressions are evaluated at the same degree of precision. However, if
you neglect to pay attention to the number of significant digits in the variable and to the
order of executing operations, an error may result.

3

A#=10/3%3#

B#=10#/3%3
In the above example, 9.999999761581421 will be stored in variable A# and 1.0E+01
will be stored in B#.
In logical operations, all the logical operands are converted to integers and an integer
result is returned.
An “Overflow” error will occur if the operands are not in the range —32768 to 32767
when converted to integers.

Example: A=NOT 123.456

In this example, —124 will be stored in A.
When a real number is converted to an integer, the fractional portion is truncated. If the
real number when converted to an integer is not in the range —32768 to 32767, an error
also occurs.

Example: A%=777.7
778 will be stored in A.

If a double precision variable is assigned to a single precision variable, only the first
seven digits rounded down will be stored.

Example: P1=3.141592653589793
3.141593 will be stored in P! and
displayed as 3.14159

2.8 Expressions and operations

An expression refers to (1) a string or numeric constant, (2 a string or numeric variable, and
(® a combination of string or numeric constants and variables connected by operators.

Examples: “ABCD”

1.41421356
2%3
A+B/C

BASIC employs the following five types of operators in performing mathematical or logical
operations.

2-6

Arithmetic operators
Relational operators
Logical operators
Functional operators
String operators

2.8.1 Arithmetic operators
(1) EPSON BASIC uses the following arithmetic operators

Operator Operation e)ﬁ)irens‘;li%n
~ Exponentiation A~B
- Negation —-A
%, / Multiplication and division of A%B, A/B
real numbers
+, -~ Addition and subtraction A+B,A-B

Parentheses are used to change the order of operations. Operations within parenth-
eses are performed first.
Shown below are the representations of the algebraic expressions in BASIC.

EPSON BASIC Algebraic expression
3%kX+Y 3X+Y
XY-Z X+Y)~Z
XA2+Y%3+4 X2+3Y+4
YAYAZ (XY
Xk (=Y) X(=Y)

(2) Integer division and modulus arithmetic

Integer division is denoted by the backslash (\). If operands are real numbers, they are
converted to integers before execution. Quotients are truncated to integers.
Example: A%=10\3

B%=9.5\3.3

The value stored in both A% and B% will be 3.
Modulus arithmetic, denoted by the operator MOD, returns the integer value of the
remainder of an integer division.

Example: A%=10 MOD 3
1 will be stored in A%.

(3) Division by zero and overflow
If a division by zero occurs during the evaluation of an expression, a “Division by zero”
error occurs and execution of the operation is terminated. If the result of an evaluation
or a value assignment exceeds the number of digits that can be handled by the variable,
an “Overflow” occurs and execution stops.

2.8.2 Relational operators

Relational operators are used to compare two values. The result of this comparison is either
“true” {(—1) or “false” (0). This result is then used to make a decision regarding programme
flow.

. Sample
Operator Relation tested expression
= Equality X=Y
< >, >< Inequality X<>Y, X><Y
< Less than X<Y
> Greater than X>Y
<=, =< Less than or equal to X<=Y, X=>Y
>=, => Greater than or equal to X<=Y, X=>Y

Example: X=A=0
If A=0, —1 will be stored in X, and
if A<>0, 0 will be stored in X.

2.8.3 Logical operators

Logical operators are used to perform tests on multiple relations, bit manipulation, or
Boolean operations. Logical operators return a result for each bit that is either a true (1) or
false (0).

NOT (Negation)

X NOT X
1 0
0 1

AND (Logical product)
X Y X AND Y

1 1 1
1 0 0
0 1 0
0 0 0
OR {(Logical sum)
X Y X ORY
1 1 1
1 0 1
0 1 1
0 0 0

2-8

XOR (Exclusive-OR)

X Y X XOR Y

1 1 0

1 0 1

0 1 1

0 0 0
IMP (Imptication)

X Y X IMP Y

1 1 1

1 0 0

0 1 1

0 0 1
EQV (Equivalence)

X Y X EQV Y

1 1 1

1 0 0

0 1 0

0 0 1

Logical operators can be used to connect two or more relational operators to make
decisions on complex conditions with a single statement. If the value given by the logical
operator is —1 (true) or O (false), the result obtained must be either —1 or 0.

Example: IF A<0 AND B=0 then 100
In this example, if A is negative and B is 0,
program control branches to line 100.

Logical operators convert their operands into two's complement integers in the range
—32768 to 32767 before any operations. If the operands are not in this range, an error
occurs. The given operation is performed bit by bit on these integers.

Example: A=21 AND 13
21=(10101),, 13=(01101),
(10101), AND (01101),=(00101),
(00101),=5
Thus the value entered in A is 5.

2.8.4 Functional operators

A function is used in an expression to call a predetermined operation that is to be
performed on a given argument.

BASIC has “Intrinsic Functions” consisting of numeric functions such as SIN, SQR, etc.,
and string functions such as RIGHTS$, STR$, etc. For details of these functions, please refer
to Chapter 4.

29

As explained later at DEFFN in Chapter 3, BASIC also allows “User defined” functions.
If a real number is assigned to a function which normally takes only an integer as its
argument, the fractional portion of the real number is rounded off to the nearest integer and
then the functional operation is performed. A double precision real number may be
assigned as the argument of a numeric function. In this case, however, the operation is
performed in single precision.

2.8.5 String operations

Strings may be concatenated using a plus sign (+).

Example: A$="ABC"+CHR$(34)
ABC” will be stored in AS$.

Comparison of strings can also be made using relational operators.

= < > <> >, <=, =<, >=, =>

Strings are compared by taking one character at a time from each string. If two strings
compared are the same, both the strings are judged “equal”. If any of the codes differs, the
lower character code number precedes the higher. in string comparison, the shorter string

is considered smaller. Leading and trailing blanks are significant in string comparison.

Example: “AAA"="AAA"

X< Y
“XYZ" > XYY"
“ABC” > "A BC”

2.8.6 Precedence order of operations
Mathematical and logical operations are performed in the following order.

1. Operations within parentheses
2. Functions

3. Exponentiation (#)

4. Negation (~)

5. Multiplication and division of real numbers (3, /)
6. Integer division (\)

7. Modulus integer division (MOD)
8. Addition and subtraction (+, —)
9. Relational operands

10. NOT

11. AND

12. OR

13. XOR

14. IMP

15. EQV

2-10

2.9 Error messages

If EPSON BASIC detects an error which causes the execution of a programme to stop, an
error message is printed and the HX-20 returns to command level.
The format for error messages in the direct mode is:

XX Error

The format in the programme mode is:
XX Error in nnnn

XXis the error code and nnnn is the line number where the error was detected. For details
of the BASIC error messages, refer to APPENDIX A.

2.10 DIP switch setting

The DIP switch setting can be changed by opening the cover on the back of the HX-20 as
shown below.

DIP switch

[

)

T
[

ZOFF—ja_
%]

=]
haad

CLLLLLLLLELLL

[]

=)
"
i w—

rercrcerrree

Location of the DIP Switch

The DIP switch settings for the character codes for each country are as shown below.

USASCII 123 4 Denmark T 2 3 a
ufulal"] ulul"|"
— OFF — — OFF —
France 123 4 Sweden 12 3 4
*lulal" "Ll
— OFF — — OFF
Germany 12 3 4 ltaly 12 3 4
uf"laf" o"I"l"
— OFF — — OFF —
England 1234 Spain 123 4
"I"lal" 1"
— OFF — — OFF —

You can also do this by software. (See POKE in Chapter 3.)
For the respective countries’ character codes, see APPENDIX F.

How to use Chapters 3 and 4

All the commands and statements of EPSON BASIC are explained in alphabetical order for
easy reference in Chapters 3 and 4. All /O commands related to peripheral devices are
explained collectively.

For details of the operations and features peculiar to the respective peripherals, refer to
Chapters 1 and 5.

Commands and statements prefixed with an asterisk “ " are those unique to BASIC. As
these commands and statements operate differently from conventional BASIC commands
and statements, please read the explanation of each of these commands with great care.
The descriptions of BASIC commands and statements are presented in the following
format.

ZOLIIEYE Explains how to write the command or statement. Follow the syntax
described below when you input each command or statement.

1. Input items shown in uppercase letters using either uppercase or
lowercase letters. Make this distinction, particularly for those items
enclosed in double quotation marks (filenames, etc.).

2. Items surrounded by “< >" are those to be specified by the user.

3. ltems enclosed in brackets “[]” are optional and can be omitted. If you
omit these items, the HX-20 will supply the default values or previously
specified values.

4. Symbols other than those described above, e.g., parentheses, commas,
colons, semicolons, hyphens, equal signs, etc., must be input exactly at
the positions as they are shown in the manual.

5. Optional items indicated by “. . .” can be repeated as many times as
desired within a maximum of 255 characters.

Example: <variable>[,<variable>. .]
A, BS, Cl, D, etc., may be repeated.

6. When two or more items appear between two vertical lines, this means
that you must specify the desired function by selecting one of the items
for input.

THEN j<statement>
<line number>

GOTO <line number>

In this example, the possible choices for input are:

®THEN <statement>

®THEN <line number>

oGOTO <line number>

Example:

2-13

7. As a rule, BASIC ignores spaces. However, spaces are not permitted
within variable names and keywords. If a variable is to be followed by a
keyword, a space must be inserted to delimit them for correct operation.

Describes briefly how the command or statement functions.

This shows a simple example of actual input.

Hints on the correct use of each command or statement are given, along with
a description of their functions.

SAMPLE Sample programmes using the command or statement are presented for
PROGRAVIIE Rt

In the HX-20, 5 programmes are independently managed in the respective programme
areas. Therefore, to avoid the accidental destruction or loss of important data or
programmes in the memory, be sure to check the programme area using a STAT or LIST
command, before modifying any programme.

CHAPTER 3
Commands and Statements

CLEAR

FORMAT
PURPOSE

EXAMPLE
REMARKS

CLEAR [<character area size>[,<<RAM file size>]]

To initialise variables and to set the size of the character area and the RAM
file.

CLEAR 200, 256

CLEAR command sets all numeric variables to 0 and all string variables to null.
CLEAR also closes all OPENed files and voids all data defined by DEF
statements (DEFFIL, DEF FN, DEF USR, DEFINT, etc.). <character area

- size> is the size, in bytes, of the memory area used by BASIC for character

SAMPLE
PROGRAMME

string processing.

<character area size> is set to 200 bytes at each warm start. When
executing operations on a large number of character strings, or when using a
large character array, specify sufficiently large <character area size>, or an
“0S” error will occur.

<RAM file size> sets, in bytes, the area of the memory to be used for RAM
file storage. <RAM file size> is set to 256 bytes at each cold start and is not
affected by warm start.

When using a CLEAR command to set <RAM file size>, <character area
size> cannot be omitted. Also note that when changing the size of a RAM file
in which data is stored, if the newly set size is smaller than the previously set
size, data in excess of the new size will become void.

LIST

166 FOR I=1 TO 1@
110 ACI>=I : NEXT 1
120 505UB 200

130 CLEAR

149 GOSUB 200

158 END

208 FOR I=1 TO 1@
210 PRINT USING"####"5A(10}
220 NEXT I

230 PRINT

248 RETURN

RUN

3-2

CLOSE

LLEIVINE CLOSE[[#]<file number>,[#]<file number>...]1]

AWEIROES To close file(s).
[20\IHA CLOSE #3

CLOSE closes a file specified by <file number>. <file number> is the
number under which the file was opened. The file may then be reopened
using the same or a different file number; likewise, that file number may now
be reused to open any file.

A CLOSE statement without <file number> closes all files opened at the
time of executing the statement. # before <file number> may be omitted.
Note that END and NEW statements always close all files automatically but a
STOP statement does not close any files.

When an output file has been opened, the file must be closed in order to
correctly complete the output processing of the data remaining in the buffer.
After CLEAR, LOGIN, NEW, DELETE, WIDTH, LOAD, RUN, or MERGE is
executed, or a programme is edited, all the files being open at that time will
be closed.

(See END, OPEN and 5.2, Sequential Files.)

*CLS

FORMAT oK
V3O To clear a text screen.

BN EXAMPLE oK)

CLS clears only the text screen (virtual screen) on the LCD or external display
and returns the cursor to its home position (i.e., the upper left-hand corner of
the virtual screen). However, when a CLS is executed with both text and
graphic screens being displayed on the LCD, the CLS will also clear the
graphic screen. CLS functions the same as PRINT CHR$ (12).

(See GCLS.)

COLOR

COLOR [<foreground colour>][,[<background colour>]
[,<colour set>]]

To specify the screen colours of the external display.

COLORO, 3,0

COLOR is used to set the foreground colour (i.e., display colour of lines and
characters) and background colour of the external display. This command is
effective only when the HX-20 is connected to an external display (e.g., TV)
through the optional display controller.

You can specify colours using colour codes 0 to 3. The foreground colour and
the background colour can be specified independently. A total of 8 colours are
available for display. A maximum of 4 colours can be output simultaneously
and either of two colour sets can be selected using code “0" or “1”.
The colour codes and corresponding colours are shown below.

Colour code
Colour set 0 0: Green
1. Yellow
2: Blue
3: Red
Colour set 1 0: White
1: Cyan
2: Magenta
3: Orange
The default values at warm start are as follows.
<Foreground colour>: 1
<Background colour>: 0
<Colour set> : 0

{See SCREEN.)

3-4

CONT

ZOl:ANI CONT

IR To resume the execution of a programme that has been stopped.

[GWIHES] CONT

REMARKS IR URscEE) BREAK key during programme execution, or when a STOP in a
programme is executed, execution of the programme will stop and the

message “Break in XXXX" will be displayed. At this point, the programme
execution resumes upon input of a CONT command.

CONT is usually used together with a STOP statement for programme
debugging.

If you press key during the I/O operation to a printer or a cassette,
message “Abort” will be displayed. In this case, programme execution -
cannot be resumed by a CONT command. This command is also invalid if the
programme is edited after it was stopped by key or STOP.

COPY

LNl coPY

SEERHA To output the characters and graphics displayed on the LCD, on the built-in
microprinter.

[CIHE] COPY

COPY command, unlike an LPRINT statement, provides hard copy without
any space between lines. Therefore, with this command, you can print the
graphics drawn using LINE and PSET statements exactly as they are
displayed on the screen.

35

SAMPLE
PROGRAMME

166
i@
128
138
148
SET
158
1682
178
is8
190
208
214

228

PI=3. 141592
Di=P1/64

CLS

PRINTCHRS$(23)
LINECER, 31)-(60,8),P

FOR ¥=8 TO &3
A=STHCR 2SS

H=r+hy
LINE-CA+68, Y25, PSET
HERT ¥

copPY

GOTO 138

EMD

3-6

DATA

FORMAT
PURPOSE

EXAMPLE
REVMIARKS

DATA <constant>[,<constant>...]

To store the numeric and string constants that are accessed by the READ
statement(s).

DATA HX, 20, EPSON

DATA statements are nonexecutable and may be placed anywhere in the
programme and any number of DATA statements may be used in a
programme.

Any type of constant can be used in <constant> (e.g., single precision,
double precision, integer), while no numeric expressions (e.g., 3%4) are
allowed. The variable type (numeric or string) given in the READ statement
must agree with the corresponding constant in the DATA statement.
Each <constant> in a DATA statement must be separated by commas.
String constants must be surrounded by double quotation marks if they
contain commas, colons or significant leading or trailing spaces. Otherwise,
quotation marks are not needed.

(See READ and RESTORE.)

SAMPLE
PROGRAMME

i8 READ R.B-T

S8 FRINT AiBiC

38 DATA 1.2,3:4,5,6,7:8,
.16 ’

43 FEAD #.B.C

o8 PRIHT AsB:C

=8 READ A-B. T

FRINT fsB:C

17

]

.
"
0

28 END
1 2 3
4 5 &
¥o8 9

3-7

DEFFIL

DEFFIL <record length>, <relative address>

To define the relative address of record 0 in a RAM file and the length of a
single record.

DEFFIL 20, 200

LA <relative address> is the number of bytes from the starting address of the
RAM file area specified by a CLEAR statement. <record length> defines the
length, in bytes, of a single record in the RAM file area to be used.

. When BASIC is warm-started, <record length> is set at 255 bytes and
<relative address> at 0. Execution of a CLEAR statement will also void the
<record length> and <relative address> previously defined by the DEFFIL
statement and the default values become 255 and 0 respectively at the time
of a warm start.

{See GET%, PUT% and 5.1, RAM Files.)
PROGRAMME

LIST

108 DEFINT I.J,K

110 DEFFIL 2,0

120 FOR 1=8 TO 15

139 PUT% I,1

148 PRINT USING " & &":HEX$(1);

150 HEXT 1:PRINT

160 DEFFIL 2.1

178 FOR J=0 TO 15

189 GET% J,K _

195 PRINT USING " & &"3HEX$(K)3

200 HEXT J

219 END

RUN . |
2 1 2 3 4 5 & 7
&8 9 A B © D E F

8 100 200 390 429 Sp@ c6@ 700
200 900 RGO BOO L8O DoP EO6 FOO

3-8

DEF FN

FORMAT

EXAVIPLE

DEF FN<name>[(<parameter>[,<parameter>....])]=
<function definition>

To define a function created by the user.

DEF FNZ(X, Y)=X*%2+Y*%3+A

<name> is the name of a function and must begin with alphabetic characters
except reserved words (and is subject to the same restriction as variable
names). The list of parameters comprises those variable names in the
function definition that are to be replaced when the function is called. The
items in the list are separated by commas. <function definition> is an
expression that performs the operation of the function. It is limited to one
line.

Variable names that appear in this expression serve only to define the
function; they do not affect programme variables that have the same name. If
a variable name used in <function definition> does not appear in the
argument list, the current value of the variable is used.

User-defined functions may be numeric, string or a combination of both.
However, the type of the defined argument must match that of the variable
actually called. A DEF FN statement must be executed to define a function
before it is called.

If a function is called before it is defined, a UF (undefined user function) error
will occur

SAMPLE
PROGRAMME

188 DEFFHACR, O, R)=SGR{B™
202 2HENCHCOS (RS 120X,
141592623

1i@ INPUT"SIDE B=":B

128 IMPUT"SIDE C=":C

138 IHPUT"ANGLE R=";R
148 A=FHACEB:C R

158 PRIMT “"SIDE A= “i14
led GOTO 118

178 END

o,

DEFINT/SNG/DBL/STR

FORMAT

PURPOSE
EXAMPLE
REMARKS

DEF|INT |<range(s) of letters>
SNG
DBL
STR
To declare variable types as integer, single precision, double precision, and
string.
DEFSTR A,X-Z

DEFINT, DEFSNG, DEFDBL and DEFSTR declare that the variable names
beginning with the letter(s) specified by <range(s) of letters> will be integer
type, single precision type, double precision type and string type, respec-
tively.

To declare a variable or a range of variables, a single letter or two letters linked
with a hyphen will be used as the letter(s) to be specified by <range(s) of
letters>. To declare two or more ranges of variables, the letter(s) specifying
each range of letters will be separated by a comma. However, a type
declaration character always takes precedence over a DEF type statement in
the typing of a variable. f no type declaration statements are encountered,
BASIC assumes that all variables without declaration characters are single
precision variables.

3-10

SAMPLE
PROGRAMME

LIST

169
118
128
130
140
150
160
170
1806
199
2008
218
220

DEFINT A-C

DEFSNG E-G

DEFDBL I-K

A =123. 456789
B#=123. 456789
D =123. 456789
E =7v89. 123456
F%=789. 123456
H#=739. 123456
I =8.98765432
J%=0. 98765432
L =8.98765432
FRINT & »B#,D

236 PRINT E >FZ,H#

248 PRINT 1 ,J%L

250 END

RUN
123 123. 456783
789. 124 789

. 98765432 1

>

3-11

123. 457
789, 123456

. 957654

DEF USR

{eIUNE DEF USR[<digit>]=<starting address>
[YAIdOE]S To specify the starting address of a machine language subroutine.
GV DEF USR6=&HOCO00

GIAURGEEY DEF USR specifies the starting address of the machine language routine
called by the USR function. <digit> may be any digit from 0 to 9. A total of 10
USR functions are permitted. If <digit> is omitted, 0 is assumed.

(See USR and 5.3, Machine Language Programmes.)
PROGRAMME

MEMSET &HBR41
LIST

169 POKE %HPA40: ZH39
118 DEFUSRB=%HOA40
120 ° &H39 = RETURN
120 A=USR(B)

149 FRINT A

150 END
RUN

%]

b

312

DELETE

DELETE [<starting line number>][—[<ending line number>]]
To delete specified programme lines.
DELETE 100—200

DELETE 100—

DELETE —-200

DELETE 100

DELETE command deletes all or part of the programme currently LOGged IN
as specified by <starting line number> and <ending line number>. If only
<starting line number> is specified, only that programme line is deleted.
<starting line number> followed by a hyphen deletes that line and all
higher-numbered lines. If <ending line number> preceded by a hyphen is
specified, all the lines from the beginning of the programme through that line
are deleted. When the DELETE command is executed, all files OPENed at the
time of execution are closed.

(See LOGIN.)
PROGRAMME

100 *DELETE ELIMINATES
116 "UNEEDED LIMES

120 "DELETE LINES 120 TO
14

138 *%AHHUNEEDED L INE##%
148 THR¥FEACESS LINE®hk
156 * ##IMPORTANT LINE##
168 "H#4NECESSARY L INE##

DELETE 1206-1480

18@ *OELETE ELIMIMATES
119 *LINEEDED LINES

128 "#RIMPORTANT LINES##
168 "H##NECESSARY L INES#

-~

DIM

DiIM<variable>(<maximum subscript value>[,<maximum
subscript value>...])i,...] ‘

To declare the size of array variable elements.

DIM A(40, 10), B$(50)

HIANEGEE] DIM specifies the maximum value for array variable subscripts and allocates
storage accordingly.

If an array variable name is used without a DIM statement, the maximum
value of its subscript(s) is assumed to be 10. The minimum value for a
subscript is always 0, unless specified as 1 with the OPTION BASE
statement. If a subscript that is greater than the specified maximum is used, a
BS (“Bad subscript”) error occurs. The DIM statement sets all the elements
of the specified numeric array to an initial value of zero, and those of the
specified character array to null.

{See ERASE and OPTION BASE)

END

FORMAT mS\s]

EINGERREE To close all files and terminate programme execution.

[Ny END

EEMETE END terminates programme execution after closing all files and then returns
BASIC to command level.
An END statement can appear anywhere and as often as required in a
program. The END statement is optional at the end of a programme. In this
case, no files will be closed.

3-14

ERASE

IZ:{"/JYll ERASE <array variable>[,<array variable>...]
YA To eliminate arrays from a programme.

[C\IYNE ERASEA,. B

ERASE eliminates the previously dimensioned arrays specified by the list of
array variables. After arrays have been erased, they can be redimensioned
using a DIM statement. If an attempt is made t& redimension an array without
first erasing it, a DD (“Duplicate definition”) error occurs.

{See DIM.)
SAMPLE
PROGRANMME

LIST

168 OPTION BASE 1
118 D=10

126 FOR I=1 TO 18
138 ACI>=11-1

140 NEXT I

158 GOSUB 3e@e

168 ERASE A

176 D=28

188 DIM Ac28)

198 FOR I=1 TO 20
208 ACI)=1

218 NEXT 1

228 GOSUB 360

239 END

380 FOR I=1 TO D
310 PRINT USING"####":A(103
326 NEXT 1

338 PRINT

3428 RETURN

RUN
18 9 8 7 6 5 4 3I 2 1

1 2 3 4 5 6 ¢ 8 9 10
11 12 13 14 15 16 17 18 19 20

3-15

ERROR

HBENIIE ERROR<integer expression>
IEEREA To simulate the occurrence of an error; or to allow error codes to be defined
by the user.

[3.\I4HY ERROR 225

When an ERROR statement is executed without ON ERROR GOTO, the
message of the error code corresponding to the <integer expression> wili be
output and the programme execution will stop.

If an ERROR statement specifies a code for which no error message has
been defined, the HX-20 will respond with a message “UP Error”. In all cases
the value of the error code will be assigned to variable ERR and the line
number in which the ERROR statement was encountered will be assigned to
variable ERL.

An unused error code can be defined by the user with an ERROR statement,
and this code can in turn be used in an error processing programme with an
ON ERROR GOTO statement. <integer expression> must be in the range 1
to 255. :

(See ON ERROR GOTO, RESUME, ERL/ERR, and APPENDIX A, Error Messages.)
PROGRAMME

LIST

180 INPUT "ERROR NUMBER"
A

118 ERROR A

126 END

RUN
ERROR NUMBER? 78
UP Error In 110

RUH
ERROR MUMBER? 4
oD Error In 118

RUN
ERROR NUMBER? 54
lgE Error In 11

3-16

EXEC

[Nl EXEC [<starting address>]
VLTI To start the execution of a machine language subroutine.

S CYIHNY EXEC &HOCO00

EXEC executes a machine language subroutine from the <starting address=.
However, before execution of an EXEC command, the machine language
subroutine must be loaded into the memory by executing a LOADM
command or similar statement.

When EXEC is used within a programme, the BASIC programme execution
continues with the BASIC statement immediately following the EXEC
statement after the machine language subroutine has terminated.

When <starting address> is not specified, execution begins from the
<starting address> of the LOADM command or the EXEC command
previously executed. BASIC command are ineffective while the machine
language subroutine is being executed. The BASIC programme and the RAM
file are not protected against careless use by the machine language
subroutine and ample precautions must be taken to avoid their destruction:

{See LOADM, USR and 5.3 Machine Language Programmes.)

FILES

[Z VY FILES[”<device name>"]
FVGEITeA To display the names of all files residing on a specified memory.
(YN FILES “CAS1:”

EAEGI The following information is displayed for all files residing in the auxiliary
memory specified by <device name>: filename, filetype, classification,
recording format. Classification is displayed as a single digit,

0: BASIC programme file
1: Data file
2: Machine language programme file

Recording format is shown with either “A” or “B”

A: ASCIl format
B: Binary format

If <device name> is omitted, all of the peripheral devices currently
connected are automatically searched and the device with the highest
precedence (i.e., defauit device) is assumed. If no peripheral device is
connected, “CAS1:” is assumed. in BASIC, there is a feature for the
detection of the end of files, but none for the detection of the end of tapes.
For this reason, when “CASt:"” or “CAS0:" is specified as the <device
name>, the cassette tape will run indefinitely. You must determine the end
of the file, and press the key at the appropriate moment to stop
execution.

3-18

FOR...TO...STEP—-NEXT

REMARKS

FOR <variable>=<initial value> TO <final value>
[STEP <increment=>]

NEXT[<variable>[,<variable>...]]

To allow a series of instructions between FOR-and NEXT statements to be
performed in a loop a given number of times.

FORI=0TO 100 STEP 5

NEXT I

<variable> is used as a counter. The counter is first set to the value specified
by <initial value>. BASIC executes the programme lines following the FOR
statement until the NEXT statement is encountered. Then the counter is
incremented by the <increment> amount specified by STEP and a check is
performed to see if the value of the counter is greater than <final value>.
If it is not greater, BASIC returns to the programme line following the FOR
statement to repeat the same processing. If it is greater, execution continues
with the statement following the NEXT statement.

Numeric expressions may be used for <initial value>, <final value> and
<increment>. If STEP is not specified, <increment> is assumed to be one.
If <increment> is negative, the <final value> of the counter is set to be less
than the <initial value>.

If <increment> is positive and the <initial value> of the counter is greater
than the <final value>, or if <increment> is negative and the <initial value>
of the counter is not greater than the <final value>, no FOR...NEXT loop will
be executed. However, the <initial value> will be assigned to the
<variable>.

FOR...NEXT loops may be nested, that is, a FOR...NEXT loop may be placed
within the context of another FOR...NEXT loop. When loops are nested, each
loop must have a unique variable name as its counter. The NEXT statement
for the inside loop must appear before that for the outside loop.

If a NEXT statement is encountered before its corresoponding FOR
statement, a “NEXT without FOR” error message is issued and programme
execution is terminated.

If nested loops have the same end point, a single NEXT statement may be
used for all of them, by separating the variables to be represented with
commas (e.g., NEXT [,J,K).

SAMPLE
PROGRAMME

LIST

169 FOR 1=30 TO @ STEF -Z
119 FOR J=1 TO I

128 PRIMT" "3

138 NEXT J

148 FOR K=1 TO 30-1

158 PRINT"*"3

168 NEXT K
176 FRINT
180 NEXT 1
196 EHD
RUN
¥
Aok
Fok Aok Ak
Aok Aok K
ook ¥ pokdokk
A AKX Ak K
AcofokkdoAok Aok koAk
Ao Ak K Nk AR ok Rk Ak
Aok A AR RAOK H K bk
FkAokokkRokokR kKR OK kAR A0k

AAAAKAORA AR A A AR ¥ A bk
FkRAAOR KRR K A Ak A K Aok ok
AORRRkokA Ok sk dololokok K ROk AR 3 E oK
AROKRAOR AR AN R AN R AK A A AR AR KA Ak
Kok kR RK ROk R AR ¥k kK ok koK ek Kok ok
>

3-20

GCLS

FORMAT
PURPOSE
EXAMPLE

REMARKS

GCLS
To clear a graphic screen.

GCLS

GCLS clears only the graphic screen being displayed on the LCD or external
display. If both text and graphic screens are displayed on the LCD, the text
screen will be left as is.

(See CLS))

GET%

FORMAT

PURPOSE
EXAMPLE

REMARKS

GET% <record number>,<variable name>[,<variable
name>-...]

To read data from a”RAM file into variables.

GET% O, Al, B#,C$

GET% statement reads data from the record in the RAM file specified by
<record number> into the variables specified by the list of variable names.
<record numbers> start from 0.

Before executing a GET% statement, the length of a single record and the
position of the file containing that record must be defined by a DEFFIL
statement.

The types of the variable names in the GET% statement must correspond
one-to-one with the types of the variable names in the PUT% statement.
Also, when using string variable names, they should be added at the end of
the variable list. When GET% and PUT% are to be used with multiple DEFFIL
statements, careful attention must be paid to the length and record number
of each record, as well as to the method of storing variable values.

(See DEFFIL, PUT%, and 5.1, RAM Files.)

3-21

GOSUB...RETURN

SAMPLE
PROGRAMME

GOSUB <line number>

RETURN
To branch to and return from a subroutine.
GOSUB 500

GOSUB causes an unconditional break in programme execution by transfer-
ring control to a subroutine specified by <line number> which is the first line
of the subroutine. Programme control returns to the line following the most
recent GOSUB statement when a RETURN statement in the subroutine is
executed.

Subroutines are the independent portions of a main programme each of
which contains a RETURN statement at the end of the programme.
Any of these subroutines may be called any number of times in a programme
by a GOSUB statement. A subroutine may also be called from within another
subroutine. Such nesting of subroutines is limited only by available memory.
A subroutine may contain more than one RETURN statement, if logic dictates
a return at different points in the subroutine and if each RETURN statement
corresponds correctly to a GOSUB.

4 B

18 IHPUT "¥="3X

2R IHPUT "y="3%

I\ IZ=i

48 GoSUE 268

58 K1=ANS

S8 Z=Y

78 G0SUR 2808

28 K2=ANS

o3 PRINT "X="i1X,"Y="34
1868 PRINT " (2%X+332+(2%
l_l_|+3:)/\2 [

118 PRINT "="3x1+X2
120 EHD

2898 AMS=(2¥2+30°2

218 RETURH

3-22

GO TO/GOTO

Ze VA (1) GO TO <line number>, or
(2) GOTO <line number>

aVaaerdl To branch programme execution to a specified line number.

S CNWINEY GOTO 300

YIS When a GOTO statement is executed, programme control branches
unconditionally to a specified line number.
Formats (1) and (2) provide exactly the same function.

3-23

IF.. THEN...ELSE/IF...GOTO...ELSE

[Nl IF <logical expression>
THEN |<statement>

<line No.>
GOTO <line No.>
To choose a particular route for programme execution based on conditions
established in a logical expression.
IF A >10 THEN A=0 ELSE 200

[ELSE | <statement> |]
<line No.>

IF controls programme execution according to the conditions established in
<logical expression>. If the result of <logical expression> is not zero {i.e.,
true), the THEN or GOTO statement is executed. If the result is zero (i.e.,
false), the ELSE statement is executed. If the ELSE statement is omitted, the
execution continues with the next executable statement. Within the IF . ..
THEN ... ELSE statement, separate IF statements may be nested to create a
multiplexed statement, limited to one line.

SAMPLE
PROGRAMME

1688 DEFSTR A-Z
118 DEF FHS=RIGHT$(TIMES

13

128 DEF FHD=MID#<TIME$.7
a1 d

138 CL=
1468 OL=FHD
158 05=FHE
168 IF 0S=FHS THEM 168
170 LOCATE 4.8.8
158 PRINT TIME$
19@ IF OD<FHD THEW S0UN
[0 12.4 ELSE S0OUND 19.1
I GOTO 148
218 EMD

3-24

INPUT

SAMPLE
PROGRAMME

INPUT [“<prompt string>"] | ; | <variable>[,<variable>...]

To allow input from the keyboard into a specified variable during programme

execution.
INPUT“NAME”; A$

When an INPUT statement .is encountered, execution of the programme
pauses and the HX-20 waits for input from the keyboard. If <prompt string>
is followed by a semicolon, the <prompt string>-is displayed on the L.CD
followed by a question mark “?” with a significant 1-digit space.

When <prompt string> is followed by a comma, it appears on the LCD by
itself with no following punctuation.

Data is input by pressing key and is assigned to a specified
variable. When multiple variables, separated by commas, are specified, the
data must also be separated by commas for input and must match the
variables in terms of number and type. If they do not match, the system will
display a “?Redo” message and return to a wait state for data input.
String constants need not be enclosed in double quotation marks for input
unless they contain commas, colons or significant spaces.

INPUT is invalid in the direct mode.

(See LINE INPUT.)

188 INPUT"STRIMNG":A$

118 INPUT"NUMEBER": A

128 PRIMT"THE STRING AMND
THE HUMBER ARE ":A$A

STRING? Hx
MUMBER? 28

\
THE STRIMG AND THE NUMBE
R aRE HY 2

3-25

INPUT #

FORMAT

EXAMPLE
REMARKS

INPUT# <file number>, <variable>[,<variable>...]

To read data items from a specified file and assign them to programme
variables.

INPUT#1,A,B,C$

Other than the facts that data is read from a specified file and that no question
mark is output, INPUT# functions essentially the same as an INPUT
statement.

<file number> must be the number used when the file was OPENed for
input. The data items in the file should be as those required in an INPUT
statement. When you use an INPUT# statement to read data from a data file,
data must be already prepared in the file. If the execution of the INPUT#
statement continues after all the data in the file has been read, an [E (“Input
past end”) error occurs. If you observe this point, all the data which has been
written into the data file using several PRINT# statements can be read with a -
single INPUT# statement.

(See INPUT, LINE INPUT#, OPEN and PRINT#.)

KEY

ZOINE KEY <key number>, <string>
OO To define the programmable function keys.

D CUIIHNY KEY 1,”LIST”

RISIRGIET The keyboard of the HX-20 is equipped with 5 “programmable function keys”

so0 that each key may be assigned to the function described in any string. With
these keys combined with the SHIFT mode, a total of 10 strings can be
defined. The length of character string including a control code must be a
maximum of 15 characters. Characters that cannot be input from the
keyboard can be specified using the function CHR$ appended to the string
with a plus (+) sign.

(See KEY LIST.)

3-26

KEY LIST/KEY LLIST

(1) KEY LIST

 (2) KEY LLIST
EGERERE To output the strings assigned to the programmable function keys on the
screen and the microprinter, respectively.

O8] KEYLLIST

(1) KEY LIST causes a complete list of strings assigned to the function keys
to be displayed along with the key numbers. Each control code is displayed by
typing the upper arrow “A” and a letter.

(2) KEY LLIST is the same as KEY LIST except that it causes a complete list
of strings to be output on the built-in microprinter. When BASIC is started, the
following strings are assigned to the respective function keys.

PF1
PF2
PF3
PF4
PF5

LET

AUTO
LISTAM
LLISTAM
STAT
RUNAM

PF6
PF7
PF8
PF9
PF10

?DATES: ?TIME$~AM
LOAD

SAVE

TITLE

LOGIN

HOIUAYE [LET]<variable>=<expression>
WSLIHeEIY To assign the value of an expression to a variable.
RG] 1L ET A=3.141592

LET assigns a value or the value of <expression> to <variable>. The actual
assignment is performed by the equal “=" sign and LET can be omitted.
<expression> may be a numeric or string constant. However, assignment of
a string variable to a numeric variable and the reverse are not permitted.
When assigning unmatched types of numeric variables, the variable type is to
the right of the equal sign is converted into the one to the left of the equal
sign before the assignment is performed.

3-27

LINE

LINE[(<horizontal coordinate 1>, <vertical coordinate 1>)]— .
(<horizontal coordinate 2>, <vertical coordinate 2>},
. PSET [,<colour>]
PRESET
To draw a straight line between two specified points.
LINE(0,0)—-(119,31),PSET

This statement is used to draw a straight line between any two points on the
graphic screen specified by the SCREEN statement,When using the optional
display controller, you can specify colour(s) also by setting a graphic screen on
the external display with a SCREEN statement. In this case, you must pay
attention to the range within which you can specify coordinates, as the
screen configuration of the LCD is different from that of the external display.

PRESET is used to erase a line between two points. With the LCD screen, the
line is simply erased. However, with the graphic screen set on the external
display, the line is drawn in the background colour specified by the COLOR
statement.

If coordinates 1 are omitted, coordinates 2 of the previous LINE statement or
the coordinates specified by PSET or PRESET are assumed.

NOTE: LINE Statements may not work if the value specified for either of the
two coordinates is more than 4000.

{See COLOR, PRESET and PSET.)

SAMPLE
PROGRAMME

18 CLS

20 FOR I=5 10 38 ‘
%B LINE ¢5,1>-(306,1>.PSE
48 NEXT 1

58 LINE <8,8>-(58,38),PS

ET

60 LINE (@,15>-(1080,15),
PSET

78 COPY

80 END

| Semm |

3-28

LINE INPUT

Hel:I Yl LINE INPUTI[“<prompt string>";]<<string variable>
[[IVEEEIA To input an entire line to a string variable.

p
D ENWILE] LINE INPUT “WHAT?”;A$

LINE INPUT inputs an entire line of up to 255 characters without the use of
delimiters from the keyboard and assigns it to <string variable>. <prompt
string> is a string literal that js displayed on the LCD screen before input. A
question mark is not displayed unless it is part of the prompt string. All key
inputs from the end of the prompt string to key are assigned to
<string variable>. Therefore, you can input delimiters such as commas,
double quotation marks, etc., which are not usually permitted by an INPUT
statement.

A LINE INPUT may be escaped by pressing key and BASIC will
return to command level. In this case, input a CONT command to resume
programme execution.

(See INPUT.)

SAMPLE
PROGRANMME

18 INPUT “HO. OF CUSTOME
RS"$N

28 FOR I=1 TO N

38 LINE INPUT "CUSTOMER
CATA?" s C$CDD

48 PRINT C$<ID

58 HEXT I

&8 END

HD arF CUSTONERS"
USTOMER DATAZ TOM_
..T ONES, FIELDING AUE.
TOM JOMES. FIELDIMG AU
EI
CLISTOMER DATA? DAUID
EQF‘PERFIELD: DICKEMS

DAVID COPPERFIELD, DICK
EMS ST

3-29

LINE INPUT#

LINE INPUT#<file number>,<string variable>

FWEIe a8 To read an entire line from a sequential data file to a string variable.

LINE INPUT #1, A$

LINE INPUT# inputs an entire line of characters {255 characters max.) up to a
carriage return from a sequential file without the use of delimiters and assigns
it to <string variable>.

<file number> is the number under which the file was OPENed by an OPEN
statement. <string variable> is the variable name to which the line will be
assigned.

LINE INPUT# is especially useful if each line of a data file has been broken
into fields, or if a BASIC programme saved in ASCH mode is being read as
data by another programme.

{See INPUT#.)

LIST/LLIST

FORMAT
PURPOSE
EXAMPLE

REMARKS

(1) LIST[<starting line number>][—[<ending line number>]]

(2) LLIST[<starting line number>][—[<ending line number>1]

To output a programme list (1) on the LCD or external display or (2) on the
microprinter.

LIST 100—-200

LIST —200

LIST 100—

LIST 200

LIST.

LIST

LIST outputs all or part of the programme currently LOGged IN as specified by
<starting line number> and <ending line number>. If only <starting line
number> is specified, only that programme line will be output. If <starting
line number> followed by a hyphen is specified, that line and all higher-
numbered lines are listed. If <ending line number> preceded by a hyphen is
specified, all lines from the beginning of the programme through that line are
listed. If both line numbers are omitted, the entire programme is listed.
After the occurrence of an error, or after programme editing, the line number
can be replaced with a period. Listing can be interrupted by pressing
key, or temporarily halted with key. A LIST command may be
written in a programme for listing, but the command following the LIST
command will not be executed and the system will return to command level.
The usage of LLIST is the same as that of LIST except that the list output is on
the microprinter.

(See LOGIN.)

3-30

LIST <file descriptor=>

RELINE LIST <file descriptor>[,[<line number=]
[—[<line number=>1]]

EIEEA To output a programme list into a specified file.

[SC\IgN] LIST “COMO:

FIEYTGII When a cassette is specified as the device name, this command functions
the same as SAVE in ASCIl format. If <file descriptor> is specified with a

string expression or string variable, it always begins with double quotation

marks (“).
The line numbers are specified in the same manner as LIST except that line

numbers must always be preceded by a comma.

(See LIST.)

*LIST “COMO:"

LIST“COMO:[(<BLPSC>)1"[, [<line number>]l[—[<line
number>}}}

To specify the interface conditions of the RS-232C port and execute LIST.

LIST“COMO:(2701B)”

The usage of this command is the same as that for LIST except that the
output device is the RS-232C port.
For details of <BLPSC> which specifies the interface conditions, refer to
OPEN"COMO:".

3-31

LOAD

[AE | OADI[<file descriptor>[,RIl]
LTIl To load a programme file into the memory.
[N LOAD“CAS1:PROG1.ASC”

This command loads the programme file specified by <file descriptor> into
the memory. When LOAD is executed, all open files are closed and all current
variables are deleted. However, if the <R> option (i.e., load and run) is used
with LOAD, all open files are left open and the programme is run immediately
after it is loaded.

If <file descriptor> is omitted, the first file of the default device is ioaded.
LOAD retains the programmes currently residing in the memory until the
specified file is found and actual loading begins.

Before executing LOAD, use the STAT command to check the area currently
LOGged IN.

Attempting to LOAD in an area which has been named by a TITLE statement,
will result in the occurrence of a PP (”Protected programme”) error.

(See LOGIN, SAVE, STAT and TITLE.}

*LOAD COMO:"

[ROLIYYM L OAD“COMO:[(<BLPSC=>)]"
ORI To specify the interface conditions of the RS-232C port and execute LOAD.
D CWIHN] OAD"COMO:(68N2B)”[,R]

The usage of this command differs from the normal LOAD command only in
that a programme is read through the RS-232C port. However, the
transmitted programme must be in ASCII format or an error will occur and the
programme will not be read. For <BLPSC> which specifies the interface
conditions, refer to OPEN“COMO:"

3-32

LOADM

RN LOADM<file descriptor=][,[offset value][,R}] .
JYRIJORNI To load a machine language programme file into the memory.
LWIEEY LOADM“CAS1:ABC”

The file to be LOADed should be a machine tanguage programme file created
by the monitor function or the SAVEM command. If <file descriptor> is
omitted, the first file of the default device is loaded.
<offset value> is added to the top address specified by the SAVEM
command and loading begins at the resulting address.

If the <R> option is specified, after the machine language subroutine is
LOADed into the memory, programme execution begins at <execution
starting address> specified by the SAVEM command. If <R> is not
specified, the HX-20 returns to BASIC command level after the machine
language programme has been LOADed.

However, with a SAVEM command, the contents of the memory can be
created as a file. If <R> is used with a LOADM command in a case other than
machine language programme file, the CPU will interpret this file as a
machine language programme file and will execute loading accordingly. If this
happens, the BASIC programmes and RAM files may be destroyed. Please be
careful when specifying <R> option.

<offset value> cannot be specified when the machine language subroutine
is not relocatable, even if it is loaded at a location different from that at which
it was saved. However, as the CPU performs no check to determine whether
<offset value> is permitted or not, there may be cases in which a file is
moved to a different address by the <offset value> even though the file
contains the memory data.

With LOADM, “COMO:” cannot be specified as a device name.

(See SAVEM and 5.3, Machine Language Programmes.)

333

*LOAD?

LIV Y LOAD?[<file descriptor>]

V01 To check files.

[EWILRY L OAD?“CAS1:PROG1.ASC”

EEYIGIE LOAD? checks whether or not the data file specified by <file descriptor> has

been correctly recorded. |f <file descriptor> is omitted, “CASQ:" is assumed
when the microcassette is connected to the HX-20, and “CAS1:” when it is
not connected.
LOAD? command performs CRC check while reading the file (programmes
and data) output to the auxiliary memory to confirm that the data file has been
correctly recorded. If an error is found in the CRC check, an 10 (“Device I/0")
error will be displayed. As the data file is not actually loaded during the CRC
check, there is no danger that the programs stored in the memory will be lost.
This command is not intended to verify the contents of the cassette tape with
the contents of the memory. For this reason, LOAD? can be executed even if
there is no target programme in the area currently logged in.

When executing LOAD? against files (CAS1: CASO:) stored on cassette tape,
the tape will be searched until the file specified by <file descriptor> is found
and then actual check begins. After the execution of this command, the
position of the tape recorder head will be at the end of the specified file;
namely, at the beginning of the next file.

3-34

*LOCATE

FORMAT

LOCATE<horizontal coordinate>,<vertical coordinate>
[,<cursor switch>]

To specify the cursor position on the screen.

LOCATE 10, 10,0

LOCATE positions the cursor at a specified position on the virtucal screen.
Both <horizontal coordinate> and <vertical coordinate> must be specified.
The cursor cannot be positioned outside the bounds of the virtual screen
specified by a WIDTH command.

If the cursor is positioned outside the physical screen by executing a LOCATE
command, the physical screen will automatically move to follow the cursor,
so that the cursor is positioned at the upper left-hand corner of the screen.
However, if the physical screen is at the right-hand end or the trailing end of
the virtual screen, the cursor may not be at the upper left-hand corner. Even if
the physical screen has been fixed at the left-hand end of the virtual screen
(mode 0}, the execution of a LOCATE command will cause the physical
screen to move from that position {mode 1). (When the system returns to
command level after the execution of a programme, the physical screen is put
in mode 0.)

The cursor is turned off if the option <cursor switch> is specified as “0” and
is turned on if specified as “1”.

(See SCROLL.)

3-35

*LOCATES

[TV INM LOCATES <horizontal coordinate>, <vertical coordinate>
FVEILORA To specify the position of the physical screen. .
[CIENS LOCATESO,0

EEYEGTA LOCATES moves the physical screen so that its upper left-hand comer will be
in the location on the virtual screen specified by <horizontal coordinate> and

<vertical coordinate>. The physical screen cannot leave the bounds of the
virtual screen.

As with a LOCATE comimand, after the execution of a LOCATES command,
the screen is always put in mode 1. Even after the execution of a LOCATES

command, the cursor position on the physical screen wili remain unchanged.

{See LOCATE)

*LOGIN

(ROl .Yl LOGIN <expression>[,R]
(4Bl ® To switch the programme areas.

[CIMNE LOGIN 3

EEYEGTE In BASIC, the memory space is divided into five areas, each capable of storing

separate programmes. A LOGIN command specifies the programme areas 1o
be used (for programme execution, programme editing, etc.)
<expression> must be an integer between 1 and 5.
All commands for programme execution and modification (NEW, LIST, LOAD,
SAVE, etc.) are effective only in the areas which have been specified by
LOGIN commands. }f the <R> option is specified, the programme execution
begins soon after the area for the programme was switched. After the
execution of a LOGIN command, all variables are cleared.

(See STAT.)

3-36

*MEMSET

FORMAT
PURPOSE
EXAMPLE

REMARKS

SAMPLE
PROGRAMME

MEMSET [<bottom address of memory=>]
To specify the lower limit of the memory.
MEMSET &HODO0O

in BASIC, programmes written in machine language are placed before the
BASIC programme text area. To enable the storage of machine language and
BASIC programmes at the same time, the lower limit of the memory to be
used by BASIC must be set using a MEMSET command. This also sets the
memory locations for machine language programmes.

At cold start, <bottom address of memory> is set at &HOA3F. Warm start
will not affect this <bottom address of memory>.

If <bottom address of memory> is omitted, &HOA3F is assumed. Upon
execution of a MEMSET command, all variables are cleared.

Addresses 0 through &HOAS3F are allocated as the I/O and system areas and
are not permitted for the storage of machine language programmes.

i6a OM ERROR GOTO LEIB
119

4 FOR I=EHORIF TO LHBE
36
120 POKE 1.8
128 HEXT 1
148 END

AR FRINT "BaS FMUJF.HH
ME aREd. TO FﬂTEH Bas
TEAMDT BE Ex- ELUT

313 RESUME 148
MEMSET &HBAFF

RUM

TG
Corik

337

MERGE

FORMAT

MERGE [<file descriptor>[,R]]

AWGTIeRId To merge a specified programme file into the programme currently in

EXAMPLE
[REMARKS

memory.
“CAS1:PROG3.ASC”

MERGE command merges the programme file specified by <file descriptor>
into the programme in the memory area currently logged in. The specified file
must have been saved in ASCII format. If not, a BF {“Bad file mode”) error
OCCUrS.

If <file descriptor> is omitted, the first file of the default device will be read.
If any lines in the file have the same line numbers as lines in the programme
in the memory, the lines in the file will replace the corresponding lines in the
memory. If the option R is specified, the merged programme will be executed
after the MERGE operation. BASIC always returns to command level after
executing a MERGE command. When a MERGE command is executed, all
files open at that time are closed and all variables are cleared. However, if
<R> is specified, MERGE is executed with the files being left open.

(See’ SAVE))

*MERGE “COMO:"”

ol MERGE “COMO:[(<BLPSC>)"[,RIl]
MUY To specify the interface conditions of the RS-232C port and to execute

MERGE.

[GWIHNE MERGE“COMO”:(68N2B)”,R

BENEGHEY This command is essentially the same as the normal MERGE command

except that the programme is read via the RS-232C port.
For details of <BLPSC> which specifies the interface conditions of the
RS-232C port, see OPEN “COMO:”

3-38

MID$

HRLEVISE MIDS (<string exp 1>,<n>[,<m>])=<string exp 2>
where n and m are integer expressions and <string exp 1> and

<string exp 2= are string expressions.
EIWELOIA To replace a portion of one string with another string.
FTWVETE MID$(AS,2)="BASIC”

EEYIERY MIDS$ replaces the characters in <string exp 1>, beginning at position <n>,
by the characters in <string exp 2>. The optional <m> efers to the number

of characters from <string exp 2> that will be used in the replacement. If
<m> is omitted, all of <string exp 2> is used. However, regardless of
whether <m> is omitted or included, the replacement of characters never
goes beyond the original length of <string exp 1>.

As the length of <string exp 1> never changes, the value of <n> cannot
exceed the number of characters in (string exp 1), nor can <n> be a negative
value. <string exp 1> cannot be a null string.

(See MID$ function)
SAMPLE

168 FOR I=1 T 28 STEF 4
118 Ag="

n

120 MIDECAS, To="k"
136 PRINT A%:HEX
143 EHD

3-39

MON

neAVINE MON

aValaeRIsd To transfer programme control to the machine language monitor.

S CIHE] MON

GG MON is used to transfer programme control from BASIC to the built-in
machine language monitor. The machine language monitor commands are as
follows:

S<address> Changes the contents of the memory. Input of a period (“.")
terminates this command.

D<address> Displays the contents of the memory.

G<execution address>,<breakpoint> Causes a programme to be ex-
ecuted up to <breakpoint>. The HX-20 then returns to Monitor.
K<string>~:@ Writes a menu number at the beginning of <string>, then
writes a list of strings up to ~:@. When the power is switched on, the
program specified by the menu number will be automatically selected and the
same operations will be performed as if the character strings were input from
the keyboard. <string> can be a maximum of 17 characters.

This function is cancelled upon input of KA:@, (which defines a null string for
<string>).

B Causes HX-20 to escape from Monitor mode.

X Changes the contents of the registers. Each time key is
pressed, the content of each register is displayed. By pressing key
following the input of a numeric value, the contents of the register can be
changed. This command is terminated upon input of a period.
R<device>,<filename>, R Loads a specified file into the memory from a
specified device. If R is used with this command, the programme is run after
loading the specified file.

V<device>,<filename> Performs CRC check of a specified file in a
specified device.

W<device>,<filename> Saves a specified file in a specified device.
A Specifies addresses when R, V or W command is used.

Each time key is pressed, 2-byte data is requested in the following
order.

T Top address of memory

L Bottom address of memory

O Offset

E Execution starting address

For <device>, specify C {(Cassette)) M (Micro-cassette), or P (ROM
cartridge). However, with W command, P (ROM cartridge) cannot be
specified. <filename> consists of a filename of eight or less characters and a
three-character filetype.

<filename> = <filename>. <filetype>

For details, refer to Chapter 10, How to Use the Monitor in the HX-20
Operation Manual.

340

MOTOR

[ROLUIYl MOTOR [<switch>]
eI To turn ON/OFF the motor of the external audio cassette.

D GWIIHEE MOTOR ON

EEEE® MOTOR turns on or off the Remote terminal of the external audio cassette
connected to the HX-20. By specifying <switch> as either ON or OFF, the
motor of the external audio cassette can be controlled. If <switch> is
omitted, the motor will reverse its ON/OFF state. In other words, if the
Remote.terminal is in the OFF state, the motor will reverse from OFF to ON

and vice versa.

3-41

*NEW

FORMAT
[PURPOSE_
EXAMPLE

[REMARKS

ON

NEW
To delete the programme in the memory and clear all variables.

NEW

NEW deletes all programmes in the programme area currently LOGged IN.
When this command appears in a programme, the programme in that area is
cleared and BASIC returns to command level. If the programme is in the area
that has been named by a TITLE statement, execution of a NEW command
will result in a PP (”“Protected programme”) error. Execution of a NEW
command causes all files currently open to be closed.

(See LOAD, LOGIN, and TITLE.}

ERROR GOTO

PURPOSE

EXAMPLE
REMARKS

ON ERROR GOTO <line number>

To enable error trapping and specify the first line of the error handling
subroutine.

ON ERROR GOTO 1000

An ON ERROR GOTO statement transfers programme control to a specified
error handling subroutine if an error occurs during the execution of a program.
If an error is detected with this statement being executed, BASIC will execute
a programme beginning with the line specified by <line number> and will not
display an error message. Therefore, by enabling error trapping with that
programme, you can prevent programme execution from being halted due to
the occurrence of an error.

To disable error trapping, execute an ON ERROR GOTO 0. If an error is
encountered for which there is no recovery action, execute an ON ERROR
GOTO 0 in an error handling subroutine and an error message will be
displayed and programme execution will be terminated.

(See RESUME, ERL/ERR, =nd APPENDIX A, Error Messages.)

342

SAMPLE
PROGRAMME

186 0N ERROR GDTO 268
118 IMPUT "a=".Rn

128 IF A< THEN ERRDR 25
8

128 IF FIXCAX>A THEM ER

ROR 253

o B#=14

A FOR I=2 TQ A
E#=E#¢IIHEXT 1

PRIMT aztt®

FRINT "I5 ":B#

GOTO 188

TEE T EERERRORY R

Zia IF ERR=255 AHD ERL=1
I8 5070 259

226 IF ERR=% pHD ERL=188
GOTO 278

36 IF ERR=258 AND ERL=1
28 G0TO 294

248 O ERROR GOTO 9

258 PRINT "IMPUT AM INMTE
GER "

8 RESUME 11@

278 PRIMT "UALUE TOO LAR
|3E 1)

288 RESUME 110

290 PRIMT "MEG HUMBER HO
T ACCEPTED ¥

Ja@ RESUME 116

I1e END

pot
B
D

AR}

—
SELLRE
X =)

b ek fmd ek
L0 00 =3

XN
L LY
[X xRy

3-43

*OPEN“COMO: "~

[Hel:AYl OPEN “<mode>", [#]<file number>, “COMO:[(<BLPSC>)]"
[WYiIOBIS To specify the interface conditions for the RS-232C port and execute OPEN.
[GNIIGEE OPEN “0”, #1,“COMO:(68N2B)”

This command is essentially the same as the normal OPEN command except
that it specifies the interface conditions of the RS-232C port. <BLSPC>
consists of b characters each specifying one of the interface conditions of the
RS-232C port as follows.

B (Bit rate)
Numerics 0 to 6 are used to specify the bit rate (data transfer rate).

0 110 bps
1 150 bps
2: 300 bps
3: 600 bps
4: 1,200 bps
5: 2,400 bps
6: 4,800 bps

L (Word length)
Either 7 or 8 is used to specify the word length of 1-character data.

7: 7 bits/character
8: 8 bits/character

P (parity)
N, E, or O is used to specify the method of parity check.

N: No parity check
E: Even parity check
0O: Odd parity check

S (Stop bits)
Either 1 or 2 is used to specify the stop bit length.

1. 1-bit length
2: 2-bit length

3-46

C (Control line active)

Active control (signal) lines are determined using hexadecimal digits 0
through F (corresponding to 4 binary bits, with each bit corresponding to one
control line). In the following chart, active signal lines are represented by “O”
and inactive lines (to be ignored) by “Xx". For the RTS signal, “+" sign
indicates that the positive signal potential is active and “ —" sign indicates that
the negative signal potential is active.

Control line CTS DSR RTS CD
Hexadecimal number

0 O O - O
1 O O - X
2 O O + O
3 O O + X
4 O X - O
5 O X - X
6 O X + O
7 O X + X
8 X O — O
9 X O - X
A X O + O
B X O + X
o X X - O
D X X - X
E X X + O
F X X + %

<BLPSC> can be omitted. If omitted, the HX-20 defaults to the values set
last time. At warm start, HX-20 is set in the following conditions.

Bit rate: 4,800 bps

Word length: 8 bits/character
Parity: No parity check
Stop bit length: 2 bits

CTS: Ignore

DSR: Active

RTS: + potential is active.
CD: Ignore

Using the RS-232C port, two files (for input and output) can be opened at the
same time. In this case, different interface conditions cannot be specified for
the files to be opened. The conditions under which the first file was opened
remain in effect.

347

OPTION BASE

[K0]:1i:yl OPTION BASE l o ‘
1

[(SGILeIA To declare the minimum value for array variable subscripts.
[C:WIHE] OPTION BASE 1

OPTION BASE is used to declare the minimum value for array variable
subscripts as either 0 or 1. The default base is 0. However, if an OPTION
BASE 1 is executed, the minimum value for a subscript is set to 1.
Thereafter, if an array element is referenced with a subscript specified as 0, a
BS (“Bad subscript”) error will occur. This declaration cannot be made after
array variables have been declared in a programme or referenced. Also, once
declared, this minimum value cannot be altered by redeclaration, which will
cause a DD (“Duplicate definition”) error to occur.

Once an OPTION BASE statement has been executed, the declaration by the
OPTION BASE can be neither changed nor cancelled until a RUN or CLEAR
command is executed.

(See CLEAR and DIM.)

SAMPLE
PROGRAMME

188 O ERROR S0TO 18

118 OPTION BASE 1 @ DINW

AP

128 FGR I=8 TO 9

138 ACIr=I:PRINT A(lx;
148 HEXT 1

i5@ OPTION BRSE B:EMD
16@ IF ERR=3 THEM PRINT
SMIMIMUM SUBSCRIFT IS 1©
1 RESUME 148

178 IF ERR=18 THEM PRINT
"OPTION BASE CANMOT BE

CHANGEDR"

128 RESUME HEXT

RLUIM

MINIMUM SUBSCRIPT IS 1

1 2 3 4 5 &6 7 8
9

OFTION BASE CANNOT BE CH
AHGED

3-48

*PCOPY

HoL\i:N\ll PCOPY <expression>
CISEIIe s To copy BASIC programme into another programme area.

[GNWILE] PCOPY 3

FENEGTE] PCOPY command copies the programmes in the currently logged-in
programme area into another programme area specified by <expression>.

<expression> must be within the range of 1 to 5. If there is already a
programme in the programme area specified by <expression> or if no
programme exists in the currently logged-in programme area, execution of a
PCOPY will cause an FC (“lllegal function call”} error. If the programme to be
copied is too large, an OM (“Out of memory”) error occurs and PCOPY is not

executed.

(See LOGIN, STAT, and TITLE.)

3-49

*POKE

TN POKE <address>, <numeric expression>
OGEREA To write a byte into a specified memory location.
{4 POKE &HOCOO, &H39

EEEGTEY POKE command writes one byte (8 bits) of data specified as <numeric
expression> into a memory location specified by <address>.
<numeric expression> must be a one-byte integer expression in the range of
0 to 255 (&HO to &HFF). POKE rounds off less significant digits to the nearest
integer (e.g., 1.5 to 2 and 1.4 to 1).
<address> must be a two-byte integer expression in the range of 0 to 65535
(&HO and &HFFFF). POKE rewrites the data currently in the memory.
Note that careless use of this command can be a source of malfunctions.
Since &HO to &H4D comprise a special area allocated for input/output, an
overrun may occur just by reading it.
BASIC programmes are stored in the area above the address specified by a
MEMSET command. For this reason, any attempt to execute a POKE
statement against the abovementioned special area will cause an FC error to
occur. To rewrite any of these addresses, you must write &H80 into address
&H7E. In the area between addresses &H4E and &HA3F, execution of a
POKE statement will not cause any error.
However, as. this area is used as a work area by BASIC, rewriting any of the
values in these memory locations may result in malfunctioning of BASIC.
Therefore, please restrict execution of POKE statements to the machine
language area between address &HA40 and the address specified as the
bottom address of memory by a MEMSET statement. The complementary
function to POKE is PEEK, a function which reads <numeric expression>
from a specified memory location.
POKE and PEEK are useful for efficient data storage, loading machine
language subroutines, and passing arguments and results to and from
machine language subroutines.

(See PEEK, USR, and 5.3 Machine Language Subroutines.)

3-50

Character set selection

Character set selection can be made using the POKE and EXEC statements.
To select the character set, POKE the address &H7F and write the corresponding data
shown below: :

Char?gtgg sseetl ::t(;%untry Data to be written
Spain &H10
ltaly &H11
Sweden &H12
Denmark &H13
England &H14
Germany &H15
France &H16
US.A. &H17

The starting address for the EXEC statement is &HFF6A.

In order to return to the default character set (i.e., character set selected by the DIP switch),
execute the following statements.

18 POKE ZHYE.&
28 EREC ZHFFes
Example: Spain

18 POKE THPF.ZH1B
28 EXEC THFFeRA

3-51

PRESET

ROV PRESET (<horizontal coordinate>, <vertical coordinate>)
[JUHOIY To erase a dot on a graphic screen.
[CWILEY PRESET (40,25)

GEMTE PRESET resets the colour of any of the dots drawn on the graphic screen by a
PSET or LINE statement to the background colour.
On the LCD, this command simply erases the specified dot from the graphic
screen. If an external display is connected to the HX-20 using the optional
display controller, this command will reset the specified dot to the
background colour specified by a COLOR statement when the external
display is set in the colour graphic mode by a SCREEN statement. As the LCD
and the external display differ from each other in screen configuration, please
pay attention to the range within which you can specify <coordinates>.

(See LINE, COLOR, PSET, and SCREEN.)

3-52

PRINT/LPRINT

PRINT |[<expression>[]|,| <expression>...]}

lLPRINT H
To output data on the screen or the built-in microprinter.
PRINT “EPSON”

PRINT causes the data specified by <expression> to be output on the

screen, while LPRINT command causes the same data to be output on the
built-in microprinter. <expression> may be a numeric or string expression. If
string expressions are used, character strings resulting from the expressions
are output. If numeric expressions are used, the values resulting from the
expressions are output. In this case, however, a blank space is left before and
after each output value.
If the value is negative, a negative sign “—" is output in the blank preceding
the value. When writing a list of expressions, the expressions must be
separated by a comma, a semicolon or a blank. Delimiters can be omitted
between a variable and a string constant and between one string constant
and another. In this case, the effect is the same as when each expression
was separated by a semicolon. A question mark (“?"} may be used in place of
PRINT in a PRINT statement, while LPRINT can neither be replaced nor
omitted.

Output Format and Punctuation

® When the items in a list of expressions are separated with blanks or
semicolons, the next value will be displayed or printed immediately after
the last value. When the list of expressions are separated with commas,
BASIC divides the line into display or print zones of 14 spaces each and
outputs the value of each expression at each zone.

If the result of an expression overlaps two or more zones, the next value
will be output at the beginning of the zone following the last value.

e [f the list of expressions terminates without a-comma or semicolon, a
carriage return is effected at the end of the line. If a comma or semicolon
terminates the list of expressions, the next”PRINT statement begins
output on the same line, spacing accordingly.

e |f the string to be output is longer than one line specified for the terminal,
output continues on the next line. If all the strings or values to be output
cannot be accommodated on a single line (between the cursor position and
the end of the line), a carriage return is effected and output continues on
the next line.

(See PRINT USING/LPRINT USING, SPC, and TAB.)

3-53

PRINT USING/LPRINT USING

FORMAT PRINT
|LPRINT

<expression>...]]

LT A To output strings or numerics using a specified format.

ICIZN PRINT USING “####”; AB

’

USING <“format string”>;[<expression>| ‘; |

EIEVEGIE] PRINT USING/LPRINT USING determines the field and format of
<expression> to be output by <“format string”>. PRINT USING is used to
display strings or numerics on the screen, while LPRINT USING is used to
output the same on the microprinter.

String Fields

! Specifies that only the first character in the given string is to be
output.

\ (n Blanks)\ ... Specifies that (n+2) characters from the beginning of

the given string will be output. If the string is longer than the field, the
extra characters are ignored.

if the field is longer than the string, the string will be leftjustified in
the field and padded with spaces on the right. (See Note below.)

& Used to output character strings. When a number of & is specified,
the value of a variable assigned to each & will be output. If the number
of “&” is greater than the number of strings in the expression list, the
extra "&" will be ignored.

Numeric Fields

A number sign is used to represent each digit position. Digit positions
are always filled. If the number to be output has fewer digits than
positions specified, the number will be right-justified (preceded by
spaces) in the field. (See Note below.)

A decimal point may be inserted at any position in the field. If the
format string specifies that a digit is to precede the decimal point, the
digit will always be output as 0. Numbers are rounded as necessary.
In the last example, three spaces were inserted at the end of the
format string to separate the printed values on the line.

+ A plus sign at the beginning or end of a format string will cause the
sign of the number (plus or minus) to be output before or after the
number. If two or more plus signs are placed in succession, extra plus
signs will be handled as “Characters Other Than Formatting Charac-
ters” described later.

3-54

%k %k

3

*%$

AAAN

%

A minus sign at the end of a format string will cause negative
numbers to be output with a trailing minus sign. If a minus sign is
placed at the beginning of a format string, or if two or more minus
signs are placed in succession, the minus signs will be handled as
“Character Other Than Formatting Characters” described later.

A double asterisk at the beginning of a format string causes leading
spaces in the numeric field to be filled with asterisks. The * % also
specifies positions for two more digits.

A double dollar sign at the beginning of a format string causes a dollar
sigh to be output to the immediate left of the formatted number. The
$$ specifies two more digit positions, one of which is the dollar sign.
The exponential format (“~AA~A") described below cannot be used
with 3. (See Note below.)

The * % $ at the beginning of a format string combines the effects of
the above two symbols (" % ” and “$%$"). Leading spaces will be
asterisk-filled and a dollar sign will be output before the number.
%* % $ specifies three more digit positions, one of which is used as the
output area for a dollar sign.

A comma that is to the left of the decimal point in a format string
causes a comma to be output to the left of every third digit to the left
of the decimal point. If a comma is placed to the right of the decimal
point in a format string, a comma is output at the end of the formatted
number.

Four carets (or up-arrows) may be placed after the digit position (“#")
characters to specify an exponential format. {See Note below.)

Used to represent any of the abovementioned formatting characters
as a literal character. An underscore in a format string causes the next
character to be output as a character which has no formatting
function.

If the number to be output is larger than the specified numeric field, a
percent sign is output in front of the number. If rounding causes the
number to exceed the field, a percent sign will be printed in front of
the rounded number.

355

Characters Other Than Formatting Characters

If any characters other than the abovementioned formatting characters (e.g.,
alphanumerics, graphic symbols, etc.) are placed at the beginning or end of a
format string, such characters will be output before or after the formatted
number.

NOTE: The formatting characters shown above apply to the ASC!| character
set. If your selected character set is other than ASCII, some of the formatting
characters will be output differently as shown below.

USASCII| France |Germany |England [Denmark |Sweden | lItaly Spain
£ # # # Pt
$ $ $ $ $)9 $ $
\ ¢ 0 \ ¢ 0 \ N
A A A A FN U A A

{See Section 2.4, Character Sets, for detailed information.)

3-56

SAMPLE
PROGRAMME

166
1in
ize

B=123,

456

L=-1232. 456

138 D=1224. 56

148
15a
168
"ing
178 PRINT
"5 A
28 PRINT
28 PRIMT

PRINT
PRINT

100 X

L

a5 PRINT

VIO x o B

B PRINT

t

1
C
228 PRINT

238 PRINT

»

m

]

248 PRINT
B
258 PRINMT
o 1) ; t:l
208 PRINT
ih

278 PRINMT
220 EMD
FLIN

r-at
WL
o)

s
]
ol

g8

i
o

e ol o ket i L

EALALA LR

acRon ot

tomte b bk e B At 1 B 30D
Pt o foJ it bost o] Cofimt Codio]

LTI R | 2] SRR o

fu (S

R

E=123456

IS ING
USTIHG

USIMG

USING
IS IHG

USING
USTHG
USIMG
USTIHG
USING
USTIHG
USTHG
USIHE

EFSON

fg="EPSON Hx-28"

"N ag

"THIS IS

“H#H":R
. #3

" #
"y, -
K, #73
EEH 43
"HKE, §3
"
g, -
" E

357

* PRINIT #

HRENTSE PRINT# <file number>, [<expression>...]
EERE To write data into a sequential file.

[FENHEY PRINT#1,A.B

<file number> is the number used when the file was OPENed for output.
<expression> is the numeric or string expression which is to be written into
the file. For CASO: and CAS1:, PRINT#, unlike output to the display screen,
automatically delimits the data before writing it into the file. Therefore,
irrespective of whether commas or semicolons are used as delimiters in the
list of expressions, data will be output in the same format.

(See INPUT#, PRINT/LPRINT USING, and PRINT# USING.)

PRINT# USING

ROLYIEYE PRINT #<file number>, USING<“format string”>;
[<expression>| ‘; I <expression>...]]

M AeNI To write strings and numerics into a sequential file using a specified format.
[DOGNWIILEY PRINT#1, USING“###"”; A

PRINT# USING writes string or numeric expressions into the sequential file
specified by <file number> using the format specified by <"format
string”>. For <“format string”), refer to PRINT USING.

PRINT# USING outputs data in almost the same format as that for output to
the display screen. Therefore, when reading a data file output by a PRINT
USING, the data will not be delimited unless you use delimiters; commas for
numeric expressions and double guotation marks for string expressions.

{See OPEN, PRINT USING, and PRINT#)

3-58

PSET

FORMAT

PURPOSE
EXAMPLE

REMARKS

SAMPLE
PROGRAMME

PSET (<horizontal coordinate>, <vertical
coordinate>)[,<colour>]

To draw dots on a specified graphic screen.
PSET (30,20)

PSET draws a dot at a specified location on the graphic screen specified by a
SCREEN statement. PSET does not affect the dots already drawn on the
screen. If the optional display controller is used, please pay attention when
you specify coordinates, as the external display is different from the LCD in
screen configuration. If you set the external display in colour graphic mode
using a SCREEN statement, <colour> can also be specified. In this case, if
the colour of the existing dots is different from your selected <colour>, it will
change to the newly specified colour.

If <colour> is omitted, the colour of the dot to be drawn on the screen will be
the same as the foreground colour specified in a COLOR statement.

(See COLOR, PRESET, and SCREEN.)

LIZT

160 CLS:PI=3. 14159
118 DEFINT X,Y¥

120 FOR I=6 TO 2%P1 STEP PI/54 Vel
130 X=COS(I,*15+64)
140 Y=SIN(I>*15+16 k_/

158 PSET(X,Y)
168 MEXT:COPY
>

3-59

*PUT%

[TV PUT% <record number>, <variable>[,<variable>...]
RGO To write the values of variables into a RAM file.
WY PUT%O0, A, B#,C$

RIENEGEE] PUT% writes the values of variables into the record specified by <record
number>. String variables must be written at the end of the variable list and
only one string variable per record is permitted.

If all the values of the string variables cannot be written into the specified
record, the excess portion of the string variables will be ignored.

if there is an extra capacity within the record after the last variable has been
written, the record will be padded with spaces.

(See DEFFIL, GET% and RAM Files.)

SAMPLE
PROGRAMME

1@@ DEFFIL 26.8
118 f=1. 2:BX=2:0$="ARCDE

1260 PUTXZR. A BX%. 0%

136 D=0, 123 E$=CF+0F

148 PUT=1:4.BX.[.E$

1568 "HET: CAH BE EXECUTE
[+ EVEN FOR TYFES DIFFERE
MT THAaW THE PLTH STATEME
H BUT THE UALUE WILL BE
REFUSED

ied® FOR I=6 TO 1

173 PRINT

188 GETx I.J,K¥:L¥

198 PRINT IsJikX3L$

208 GETx I.J:EX. M. ME

216 PRINT IsJ3KS MM

228 MEXT 1

238 END

B 1.2 3

ABCDEFG

8 1.2 3 8.2:2735E-20
EFG

1 1.2 2

¥ mABCDEFGABC
i 1.2 3 .123
HBCLEFSREC

3-60

RANDOMIZE

LIS RANDOMIZE [<expression>]
VLTI a To reseed the random number generator.
VI RANDOMIZE

RIETEGTE] RANDOMIZE changes the sequence of random numbers by supplying the
random number generator with a new seed. The random number seed must

be specified by <expression> within the range —32768 to 32767. If
<expression> is omitted, a “Seed?” message will be displayed upon
execution of RANDOMIZE, asking for the value of a random number seed. If
the value input is outside the above random number seed range, an error will
occur. RANDOMIZE statements cannot be executed in direct mode.

READ

ROHUNM READ<variable>[,<variable>...]
(OB To read values from a DATA statement and assigning them to variables.
NN READ A, L, CS$

A READ statement must always be used in conjunction with a DATA
statement. READ statements assign variables to DATA statement values on a
one-to-one basis. READ statement variables may be numeric or string, and
the values read must agree with the variable types specified. If they do not
agree, a “Syntax error” will result.

If the number of variables in the list of variables in the READ statement(s)
exceeds the number of elements in the DATA statement(s), an OD {“Out of
data") error will occur.

If the number of variables specified is fewer than the number of elements in
the DATA statement(s), subsequent READ statements will begin reading data
at the first unread element. If there are no subsequent READ statements, the
extra data is ignored.

(See DATA and RESTORE))

3-61

REM

XOHIV/:YA REM[<remark>]
[MSIeIF To aliow explanatory remarks to be inserted in a program.
DGV REM COMMENT MESSAGE

RARGIE] A REM statement is a nonexecutable statement that is output exactly as it
was entered in the programme.
In a REM statement, keyword “REM" can be replaced with an apostrophe
().
In'a REM statement, a colon (":”) is recognized as part of a <remark>.
Therefore, no statement can be placed after the REM statement.

RENUM

MOLVILYM RENUM [<new line number>][,[<old line
number>]],[<increment>]]
OO To renumber programme lines.

OGNV RENUM

<new line number> is the first line number to be used in the new sequence.
The default is 10. <old line number> is the line in the current programme
where renumbering is to begin. The default is the first line of the program.
<increment> is the increment to be used in the new sequence. The default
is 10.
RENUM also changes all line number references following GOTO, GOSUB,
THEN, ON..GOTO, ON...GOSUB and ERL statements to reflect the new line
numbers. If a line number nonexistent in the programme appears after one of
these statements, the error message “Undefined Line Number nnnn in
mmmm” is output. The incorrect line number reference (nnnn) is not changed
by RENUM, but line number mmmm may be changed.
A RENUM command cannot be used to change the order of programme lines
or to create line numbers greater than 64000. An FC (“lllegal function call”)
error will result if RENUM is used contrary to the above rules. [n this case, the
programme line numbers will remain unchanged. RENUM is valid only in the
programme area currently LOGged IN.

3-62

"RESTORE

FORMAT
PURPOSE
EXAMPLE

REMARKS

SAMPLE
PROGRAMME

RESTORE [<line number>]
To allow DATA statements to be reread from a specified point.

RESTORE 1000

RESTORE causes the next READ statement to access the first item in the
DATA statement at the line specified by <line number>. If <line number> is
omitted, the next READ statement will read from the first DATA statement in
the programme.

If there is no DATA statement at the line specified by <line number>, the
READ statement will read from the DATA statement at the lowest line
number after the specified <line number>.

If the line specified by <line number> does not exist in the programme, a UL
(“Undefined line number”) error occurs.

(See DATA and READ.)

LIST

160 DATA "Niokpkkolookks , HC -",2 @

110 READ A$

128 PRINT A%

130 READ A%.BX%

142 PRINT A$3B%

158 RESTORE 100

168 RERD A$

176 PRINT A$

180 END

RUN

KAokAkk ARk KKK K
HC ~ 20

e Aok kKRR KKKk

>

3-63

RESUME

RESUME [| NEXT]
<line number>
To continue programme execution after an error recovery procedure has been
performed.
RESUME 100

With RESUME, you can specify the statement or programme line at which
programme execution is to resume after an error recovery procedure has
been completed. The three format options are as follows.

RESUME Execution resumes at the statement which caused the
error.

RESUME NEXT Execution resumes at the statement immediately following
the one which caused the error.

RESUME<line Execution resumes at the line specified by <line number>.

number>

(See ON ERROR GOTO.)

3-64

RUN

FORMAT

(1) RUN [<line number>] or
(2) RUN <file descriptor>[,R]

AVEIIORId To start programme execution.

EXAMPLE

REMARKS

(1) RUN 300
(2) RUN“CASO0:PROG4.ASC”

In format (1), if <line number> is specified, execution of the programme
currently in the memory begins on that line. If <line number> is omitted,
execution starts at the lowest line number.

In format (2), a programme specified by <file descriptor> is loaded into the
memory and then programme execution begins.

Execution of a RUN command clears all variables and closes all open files
before loading the designated programme. However, if the <R> option is
used with this command, all data files remain OPEN.

Before executing a RUN command in format (2), use a STAT command to
check the programme area currently LOGged IN.

(See LOGIN and STAT.)

RUN“COMO:"”

ZeAY RUN“COMO:[(<BLPSC>)]"[,R]
(MY IOB]Iq To specify the interface condition of the RS-232C port and execute RUN.
[2C:NIHNY RUN“COMO:(68N2B)"

RIAIEGIE] Except for the fact that the programme is loaded into memory via the

RS-232C port, this command is essentially the same as the normal RUN
command. However, the programme to be transmitted through the port must
be in ASCII format.

For details of <BLPSC>, which specifies the interface conditions of the
RS-232C port, refer to OPEN“COMO:".

3-65

SAVE

el \\IY\l SAVE <file description>[,|A ‘]
\Y)

FIWELTea To save an EPSON BASIC programme on a specified file.
[\ 48] SAVE“CASO0:ABC”

GEMETE This command is used to save BASIC programmes on the file specified by

<file descriptor>. If a file already exists under the specified filename, the
programme can be saved on another location under the same filename.
If this is done, two different programmes saved cannot be distinguished from
each other as they are under the same filename. Be careful not to use the
same filename.

The <A> option saves a file in ASCH format. If <A> is not specified, the file
is saved in a compressed binary format. ASCII format requires more space
than the binary format but some file access requires that the file be in ASCI!
format (e.g., when using the MERGE command for programme editing). Also,
a file saved in ASCil format may be read as a data file.

The <V> option may be used when a microcassette recorder is being used
as an auxiliary memory. In this case, after the SAVE is executed, the tape will
automatically be rewound to the beginning of the programme and program
verification (CRC check) will be performed. If <device> other than the
microcassette recorder is specified, the. <V> option will be ignored.

{See LOAD and MERGE.)

3-66

*SAVE“COMO:"”

Hol:1Y/l'Yll SAVE“COMO:[(<BLPSC>)]" A
P LRLIOEI To specify the interface conditions of the RS-232C port and execute SAVE.

MY SAVE“COMO: (68E13)" A

Except for the fact that the programme is output via the RS-232C port, this
command is essentially the same as the normal SAVE command.
If A is omitted, no error will occur. However, since the data in a compressed
binary format cannot be read properly by the RS-232C port, an attempt to
transmit such data will be meaningless.
For details of <BLPSC>, which specifies the interface conditions of the
RS-232C, refer to OPEN"COMO:".

*SAVEM

SAVEM <file descriptor>,<top address>,<bottom address>,
<execution starting address>[,V]

To save the memory contents on a specified file.

SAVEM”CAS1:ABC”, &H0B00, &H0OC00, &HOBOO

SAVEM saves a machine language programme or memory contents on a
specified file.
<top address> and <bottom address> indicate the range of the memory
contents to be saved on the specified file.
If the <V> option is specified, programme verification (CRC check) is
performed after SAVEM is executed. If a device other than the microcassette
recorder is used, the <V> option will be ignored.
Execution of machine language programme loaded into the memory by a
LOADM command will begin at <execution starting address>. Even if the
data saved is not a machine language programme, <execution starting
address> cannot be omitted and the same value as the <top address> must
be set.

(See LOADM.)

3-67

*SCREEN

HOliVIIAM SCREEN <text>, <graphic mode>
MUAIHOBI To specify the text or graphic screen mode.

N4 84 SCREEN 0,2

SCREEN sets the LCD or external display in the text screen mode and/or
graphic screen mode. (The optional display controller is required to connect
the HX-20 to an external display.)

The value of <text> must be either 0 or 1. Specify 0 to display a text screen
{physical screen) on the LCD and 1 to display a text screen on the external
display.

The value of <graphic mode> must be in the range of 0 to 2. Specify 0 to
display a graphic screen on the LCD. If 1 is specified, the external display is
set in colour graphic mode (128x64 dots, 4-colour). If 2 is specified, the
external display is set in high-resolution mode (128x96 dots, black and
white). At the time of warm start, the LCD is set in both text and graphic
screen mode.

SCREEN 0,0 ... Displays both text and graphic screens on the LCD.

SCREEN 0,1 ... Displays a text screen on the LCD and a graphic screen in
the colour mode on the external display.

SCREEN 0,2 ... Displays a text screen on the LCD and a graphic screen in
high-resolution mode on the external display.

SCREEN 1,0 ... Displays a text screen on the external display and a graphic
screen on the LCD.

Due to the limited capability of the display controller, both text and graphic
screens cannot be displayed simultaneously on the external display.

3-68

*SCROLL

FORMAT

PURPOSE
EXAMPLE

REMARKS

SCROLL[<speed>][,[<mode=][,<scroll step X>,<scroll step
Y=>11

To specify the SCROLL function of the physical screen.
SCROLL9,0,10,4

<speed> specifies the speed when the LCD screen scrolls using a value in
the range of 0 to 9, with 9 indicating the highest scrolling speed and 0, the
lowest. However, the scrolling speed of the external display is fixed and not,
adjustable.

<mode> specifies the manner of movement of the physical screen and its
value must be either O or 1.

If you specify <mode> as 0, the physical screen is fixed at the left-hand end
of the virtual screen and can move only up or down. In this mode, if the cursor
position is outside the bounds of the physical screen, note that it will not
come back into view unless the physical screen is moved, even if an output
command is executed. ,

If you specify <mode> as 1, the physical screen will automatically move to
follow the cursor.

When the system returns to command level after the execution of a
programme, <mode> is set to 0.

<scroll step X> indicates the number of characters for which the screen
should move at one time when + Ml or + BN are typed. The
value of <scroll step X> must be in the range of 1 to 20 for the LCD and 1 to
32 for the external display. <scroll step Y> indicates the number of lines the
screen should move vertically at one time when + P, + Qor
S are typed. The value of <scroll step Y>> must be in the range of 1 to
4 for the LCD and 1 to 16 for the external display. The default values at warm
start are as follows:

For the LCD SCROLL 9, 0, 10, 4
For the external display SCROLL 9, 0, 16, 16

3-69

*SOUND

FORMAT
PURPOSE
EXAMPLE

REMARKS

SAMPLE
PROGRAMME

SOUND <tone>,<duration>
To sound a specified tone.
SOUND 10, 10

SOUND causes the built-in piezoelectric speaker to sound at a specified
<tone> for a specified <duration>.

<tone> may be a value in the range 0 to 56. O indicates a pause and the
range of 1 to 28 corresponds to the scale from tone C (do) to tone B (i) which
is four octaves higher than the first C. 13 is equivalent to 880 Hz. The range of
29 to 56 corresponds to the scale with tones each of which is a half tone
higher than those in the scale represented by 1 to 28.

<duration> must be a value in the range of 0 to 255. When <duration> is
specitied, the speaker sounds for an interval specified by <duration>
multiplied by 0.1 second.

LIST

108 FOR I=1 TO €8

118 READ A.B

120 SOUND A,B

130 NEXT

140 END

209 DATA 8-8,8,4,9,4,108,8,10,4,11,4, 12,8
»13,4,12,4,10, 16

219 DATA 12,8511, 4,18 4,7,1€,11,8,10,4,9
»4,8,16

220 DATA 8,8,8,4,9,4,10,2,13.4,11,4,12,8
213,4,12,4,10, 16 .

%79 DATA 12,8,11,4, IB 4,%,8,10,4,9,4,8,3

230 Dﬁgﬁ 12,8,11,4, IB 4,9,16,11,8,19,4,9
4,8, 1

250 OATA 12,8,11,4, la 4,9,16,11,8,10,4,9
»4,8,16

260 DATA 2.8,8,4,9, 4 18,8,18,4.11,4,12,8
»12,4,12,4,10, 16

370 bATA 12,8,11,4,18,4,9,8,10,4,9,4,8,2

>

3-70

*STAT

[HelLIU:Nl STATI|ALL 1

<expression>
VGO To display the status of each programme area.

(OGN RY STAT 3

FEVEGTE] STAT displays the name and size of a programme stored in each programme

area.
<expression> is the programme area number (1 to 5). If <expression> is

used, the data in the area specified by the programme area number is
displayed. If omitted, the data in the current programme area is displayed.
If ALL is specified, the data from all the programme areas are displayed
simultaneously along with the size of the RAM file area, MEMSET addresses,
and the size of the unused text area (bytes free). However, as the size of the
unused text area displayed here includes a work area for BASIC programme
execution, it does not necessarily mean that all the unused text area is
available for programme storage.

(See MEMSET and TITLE.)

3-71

STOP

FORMAT ESapeld

FOETIeIa To terminate programme execution and return to command level.

NNy STOP

FIHEGIE] STOP statements may be used anywhere in a programme to terminate
execution and to return BASIC to command level. When a STOP statement is
executed, the following message is output:

Break in nnnn (where nnnn is a line number at which the STOP statement has
been executed.)

Unlike the END statement, the STOP statement does not close files. When
BASIC has returned to command level, programme execution can be
resumed by a CONT command.

(See CONT and END.)

SWAP

RN SWAP <variable 1>,<variable 2>
[MOIMOII To exchange the values of two variables.
DGWIHEY SWAP AS$, B$

With a SWAP statement, any type variable (integer, single precision, double
precision, or string) may be swapped, but the two variables must be of the
same type or a TM ("Type mismatch”) error will occur.

When the type of <variable 2> is a simple variable and the value of the
variable is not assigned, an FC {“lllegal function call”) error will occur.

3-72

SAMPLE
PROGRAMME

LIST

168 A=123. 456
116 B=959999

126 PRINT "A="3A
129 PRINT "B="3;B
143 SWAP A B

158 FEINT

168 FRINT “SWaP!!"
179 PRINT

1286 FRINT "A="3A
198 PRINT "B=";B
208 END

RUN

A= 123, 456

B= 993999

SWRP !

El

il
Lo
[Ry

9
56

£ 0

9
2

~ O I
1]

*TITLE

RORIUEYM TITLE <programme name>

(Y1 NI To name programmes.
DGVIEA] TITLE“TEST 1~

TITLE names a programme in the programme area currently LOGged IN.
<programme name>> may be 8 characters max. Once assigned, this name
will appear on the menu when a STAT command is executed or when power
is applied to the HX-20.

The programme named by the TITLE statement can be executed directly by
menu selection immediately after the power application to the HX-20, and is
protected against accidental erasure by a NEW or LOAD command. If you
attempt to execute either command in a programme area named by TITLE, a
PP ("Protected programme”) error will occur.

(See STAT))

3-73

TRON/TROFF

Zela\i.yl TRON

TROFF
UEIXeal To trace the execution of programme statements.

Execution of a TRON statement (in either the direct or indirect mode} as an
aid in debugging enables a trace flag that displays each line number of the
programme as it is executed. The numbers appear enclosed in square
brackets. The trace flag is disabled when a TROFF statement or NEW
command is executed.

SAMPLE
PROGRAMME

LISY

18 FOR I=1 TO 5
28 PRINT 1
38 NEXT

46 END
TRON

RUN
[193£20] 1
(393{20] 2
[3p10201 3
[381020] 4
[361028] 3
[3610401
TROFF

RUN

NHBUN -

3-74

*WIDTH

WIDTH <characters per line>, <number of lines> [,<scroll
margin=-]

To set the size of the virtual screen

WIDTH 20, 25, 5

WIDTH specifies the size of the virtual screen by <characters per line> and
<number of lines>. <characters per line> and <number of lines> can be set
arbitrarily within the ranges of 20 to 25656 and 4 to 255, respectively.
The size of the virtual screen is limited by the capacity of the memory. If you
set the screen width too large, an OM (“Out of memory”) error may occur.
The minimum values are the size of the LCD screen.

<scroll margin> is an allowance for margins that you can provide on the left
and right of the display screen, so that you can read the display screen easily
when it is moved laterally.

When the cursor comes to the edge of the screen, the next character is
outside the display screen and will therefore not be visible. For this reason,
when the cursor has moved over a certain set width, it is advisable to move
the screen also while the next character is still in view. In this way, the
character to the left of the cursor is always on display.

When the cursor has moved without leaving the scroll margin, it indicates that
the cursor has reached the end of the virtual screen.

At warm start, the size of the virtual screen is set at WIDTH 40, 8, 3 for the
LCD and WIDTH 40, 37, 5 for the external display.

When a WIDTH command is executed, all files opened at that time are closed
and all variables, character areas and data defined by DEF statements are
cleared.

You may set the size of the virtual screen freely.

When you perform programme corrections, the larger the virtual screen, the
more easily you can use it. However, with a very large Screen, you may not be
able to find the statements at all. Even if statements are being output
correctly on the virtual screen, there may be no visible changes in the display
screen.

3-75

*WIDTH <device name>

oL\ WIDTH |“LPTO:” |, <number of digits>
e |
MSI:eBI To set the print width of the printer.

0N 483 WIDTH “LPTO:”, 20

WIDTH sets the maximum value of characters per line that can be output on
the printer. Normally, for PRINT statements (including LPRINT and PRINT#)
LINE FEED (LF) signal is sent to the printer by a semicolon at the end of each
such statement. By specifying the print width with a WIDTH command, LF
signal is automatically sent to the printer when <number of digits> which
specifies the number of characters to be printed per line is reached.
<number of digits> must have a value in the range of 1 to 265. However, 255
is interpreted as infinite and no automatic line feed according to the specified
print width will take place.

NOTE:

At warm start, <number of digits> is set to 80 for the RS-232C port
(“COMO:"). Therefore, if a long string exceeding 80 characters is output, line
feed is effected automatically upon output of 80 characters. This will also be
the result if a device other than the printer is connected to the RS-232C port
of the HX-20. For this reason, when using the RS-232C port for communica-
tion with an external device, a string longer than 80 characters may not be
transmitted properly with <number of digits> set at the default value. When
programmes are to be transferred from one HX-20 to another HX-20, first
execute WIDTH “COMO. ", 255 to disable the automatic line feed operation
and then start the transmission.

3-76

WIND

Zol:{\/'Y8 WIND [<counter value>]
VI sl To control the microcassette drive for fastforward and rewind.

0145 WIND O

WIND causes the microcassette tape to be fast forwarded or rewound
according to <counter value>. <counter value> must be within the range of
~32768 to 32767.

The counter value of the microcassette recorder can be read by TAPCNT
function.

Once this value is stored in memory, the target file can be searched
irrespective of the current tape position by instructing the value with a WIND
command.

If <counter value> is omitted, the microcassette recorder rewinds the tape
to its beginning and resets the counter value to 0.

When a file is to be searched using a WIND command, you must execute in
advance a WIND without <counter value>.

(See TAPCNT.)

3-77

SAMPLE
PROGRAMME

LIST

100
1183
128
1272
148
150
160
iva
175
158
199
269
210
220
228

RUN

N0 NG Wh D

COUNT=TAPCNT

CPEN “0O", #1, "CRSA: TEST. DAT"
FOR A=t TO 10
FRINT#1,A;SQR(A2

HEXT

CLOSE #1

WIND COUNT

OPEN "1",#1,"CAS&: TEST. DAT"
PRINT :PRINT" A/ ", "SOR(AO"
IF EQF(1)> GOTO 228

INPUT#1,A:B
PRINT 6,8
G070 180
CLOSE #1
END
SORC(AY
1
1. 41421
1. 73285
2
2. 23687
2. 44949
2. 64575
2.82843
3
3. 16223

3-78

CHAPTER 4
Functions

ABS

[Tel:/I'Y ABS(<numeric expression>)
FIETIeSal To return the absolute value of a numeric expression.

WY A=ABS(—1.6)

RIEVIGIE] ABS returns the absolute value of <numeric expression>.

ASC

HeLVIENl ASC(<string>)
(YA To return the character code of a character.

SEGWIILEY A=ASC(“A")

ASC returns a numerical value that is the ASCIl code of the first character of
<string>. See APPENDIX F, “Character Code Table” for the relationship
between characters and ASCII character codes.

If <string> is null, an FC (“lllegal function call”) error is returned.

{See CHR$, and APPENDIX F, “Character Code Tabie”.)

ATN

[l YNl ATN(<numeric expression>)
(WVHOII To return the arc tangent of a numeric expression.

S CWIHEY A=ATN(0.5)

EIFNEGIET ATN returns the arc tangent of <numeric expression> in radians. The result
of the operation is in the range —n/2 to n/2.

CDBL

CDBL{<numeric expression>)

To convert integers and single precision numbers into double precision
numbers.

A#=CDBL(B/2)

JANEGIE] CDBL converts the value of <numeric expression> to a double precision
number. Only the type conversion is performed and there is no change in the
number of significant digits.

4-2

CHR$

LY CHR$(<numeric expression>)
Ao} To return the character corresponding to a specified character code.
QCVILNY A$S=CHRS$(&H41)

CHR$ returns the ASCII character whose code is the value of <numeric
expression>. If the value of <numeric expression> is not in the range of 0 to
255, an FC ("lllegal function call”) error occurs.
You may include real numbers in <numeric expression> but the fractional
portion of the real number must be rounded before using it as the value of
<numeric expression>.

{See ASC, and APPENDIX F, “Character Code Table.”)

CINT

[ROIMIUNEM CINT(<numeric expression>)
OO To convert single and double precision numbers into integers.
[DGVWIIENS A% =CINT(B#/2)

RIHNEEIES CINT converts the value of <numeric expression> into an integer by
rounding the fractional portion. If the value of <numeric expression> is not in
the range of —32768 to 32767, an OV (*Overflow”) error occurs.

(See CDBL, FIX, and INT.)

4-3

COS

[Je ;13 COS (<numeric expression>)
ISLREIeN Al To return the cosine of a numeric expression.
D OEWVIHIY A=C0S(3.1415926/2)

EETE COS returns the cosine of <numeric expression> in radians.

CSNG

CSNG(<numeric expression>) :

To convert integers and double precision numbers into single precision
numbers.

A!l=CSNG(B#)

CSNG converts the value of <numeric expression> into a single precision
number in 6 significant digits.
If the value of <numeric expression> is not in the range —1.70141 E+38 to
1.70141 E+38, an OV ("Overflow") error occurs.

(See CDBL and CINT.)

4-4

CSRLIN

KON CSRLIN

(AOLeR1 To return the vertical position of the cursor on the virtual screen.

(GRS Y=CSRLIN

HISURGIE] CSRLIN returns the value of the vertical position of the cursor on the virtual
screen. The value of the vertical position must be in the range of 0 to (number
of lines on the virtual screen —1).

(See POS.)

DATES$

XL DATES [=MM/DD/YY]

WVIORI To set the current date in, and return the date kept by, the internal calendar
clock.

GRS PRINT DATES

DATES$ displays the date kept by the internal calendar clock in the HX-20.
Using this statement, you can set the date in the form of a string such as
MM/DD/YY (e.g., “08/15/82") where MM represents the month, DD
represents the day and YY represents the vyear.
The date is displayed in the same fogmat as that when it was input. Once you
set the correct current date with a DATES, you are not required to set it again,
as the clock in the HX-20 keeps track of the time and date.

(See DAY and TIMES$.)

45

DAY

FORMAT
PURPOSE

EXAMPLE
REMARKS

DAY
To set the current day of the week in, and display the day of the week kept by,

the internal calendar clock.
PRINT DAY

In the HX-20, the day of the week is kept by the internal calendar clock by
integers 1 to 7 corresponding to the 7 days of the week. Using this
statement, you can set the current day of the week such as
DAY =7(Saturday). The day of the week is displayed by one of integers 1 to 7.
Once you set the correct current day of the week with a DAY, you are not
required to set it again.

(See DATE$ and TIMES.)

EOF

[ZS131ViIIYl EOF(<file number>)
(Vo] To return the end-of-file code.
[0\ YE] IF EOF(3) THEN CLOSE #1 ELSE GOTO 100

EIEEGTE The file specified by <file number> must have been opened for the input

mode. EOF checks if the file specified by <file number> has reached its end.
EOF returns —1 (true) if the end of the file has been reached and returns O
(false) if not.

If the specified file is RS-232C port (“COMO: "), EOF returns —1 when the
buffer is empty and returns 0 when the buffer is not empty. The EOF function
always returns O (false) for the file assigned to the keyboard.

46

ERL/ERR

Mo\ N ERL

ERR
ULl To return the error code of an error occurred and the line number where the
error occurred.

[ONIHRY A=ERL

B=ERR

When an error occurs, the error code is stored in the variable ERR and the fine
number where the error occurred is stored in the variable ERL. If the
statement that caused the error was executed in the direct mode, line
number 65535 is stored in the variable ERL.

Normally, the ERL and ERR variables are used in the error trapping routine
specified by an ON ERROR GOTO statement to control the processing flow.

(See ON ERROR GOTO.)

EXP

HOL\YANM EXP (<numeric expression>)
[WYI314ONIF To return the value of an exponential function with e as its base.

OGN A=EXP(1)

RIAEGLE] The value of <numeric expression> must be the resuft of an exponential
function. If the value of <numeric expression> is greater than 88.02969, an
OV (“Overflow”) error occurs.

4-7

FIX

[TV IY FIX (<numeric expression>)
FWELERA To return the truncated integer part of a numeric expression.

RGN A=FIX(—B/3)

GEYEXETE FIX returns the value of <numeric expression> as a truncated integer part.

FRE

(See CINT and INT.)

20\l FRE(<expression>)
AVGIZOEIA To return the size of an unused memory area.

EXAMPLE

PRINT FRE(0O)
PRINT FRE(“A$")

If the <expression> is a numeric expression, FRE returns the number of free
bytes in the BASIC text area. If <expression> is a string expression, FRE
returns the number of bytes in the BASIC string area. <expression> is
merely a dummy. Any arguments to FRE may be assigned as long as they are
numeric or string expressions. Since the size of the unused memory area
displayed includes a work area for BASIC programme execution, please use

the displayed memory capacity as a guide only.

4-8

HEXS$

HEX$(<numeric expression>)

To return a string which represents the hexadecimal value of the decimal
argument.

A$=HEX$(65535)

HEX$ converts the decimal value of <numeric expression> to a hexadecimal
value and returns it as a string. The value of <numeric expression> must be
in the range —32768 to 65635. if the value of <numeric expression> includes
a decimal fraction, it is rounded to an integer before HEX$ (<numeric
expression>) is evaluated.

(See OCT$ and VAL)
PROGRAMME

LIST

166 PRINT " DEC OCT HEX"

118 FOR I=5 70 16

120 PRINT USING"####"5 13

139 PRINT USING"& &"3" ",0CT$CI),HEXS(]

D]
149 HEXT 1

RUN
DEC OCT HEX

5 5 9
6 6 6
4 7 7
8 19 3
9 11 9
10 12 A
11 13 B
12 t4 C
13 15 D
14 16 E
15 iv F
16 20 10

>

49

INKEYS

[ZosHU:N INKEYS

[(VEIEeEIAl To return a one-character string of the pressed character key or a null string if
no character key is pressed.

[FGWIHRY AS=INKEYS$

FEEGTE] INKEYS returns a null string if the keyboard buffer is empty. If the keyboard
buffer contains any character key input, INKEY$ reads the character from the

buffer and returns it as a one-character string. Any keys not included in the
“Character Code Table” such as Elallsll key. etc., are ignored.

(See APPENDIX F, “Character Code Table”.)

4-10

INPUTS

IJela ('Yl INPUT$(<number of characters>[,[#]<file number>])
[JQUETEIORIS To return a string of characters read from a specified file.
DOV AS=INPUTS$(5,#3)

INPUT$ reads a string of characters in the number specified by <number of
characters> from the file specified by <file number>. If <file humber> is
omitted, characters can be input from the keyboard; but the characters input
from the keyboard are not echoed (i.e., not displayed on the screen), unlike
the execution of an INPUT statement.

INPUT$ is in a wait state until a string of characters specified by <number of
characters> is all input. However, if any input data exists in the input buffer,
INPUTS reads characters from the buffer.

With an INPUTS, all characters except key are read as is. Therefore,
INPUT$ allows the input of characters, such as Carriage Return (character
code 13), etc., which cannot be entered by INPUT and LINE INPUT
statements.

INSTR

INSTR([<nhumeric expression>,]<string 1>, <string 2>)

To search for the first occurrence of one string in another string and return the
position of the searched string.

B=INSTR(A$,”XYZ")

INSTR searches for the first occurrence of <string 2> in <string 1> and
returns the position at which the match is found. If <string 2> cannot be
found, INSTR returns 0.
<numeric expression> is the position for starting the search. If <numeric
expression> is omitted, the search is started from the beginning of <string
1>. If a null string is specified as <string 2>, INSTR returns the same value
as that specified by <numeric expression>.

SAMPLE
PROGRAMME

LIST

108 G3="ZXCUBNM,. 78S FG JKL :"
116 E$=INPUT$C1)

126 C=INSTR(AS$,B$)

138 IF C=p GOTO 110

149 IF C>1@ THENC=C+17

150 SOUND C+5,2

168 GOTO11G

>

4-12

INT

LI Y INT(<numeric expression>)
VLISl To return the largest integer value (truncated).
[TWVIEY PRINT INT (—-B/3)

FIAVEGIE] INT returns the largest integer value which is equal to or less than the value of
<numeric expression>.

(See FIX and CINT.)
PROGRAMME

LIST

188 PRINT " 1 CINT INT FIx"
118 FOR I=2.4 TO ~-2.4 STEP -8.3

128 A%=CINTC(I>

139 Bx%=INTCID

148 Cx=FIXC1)

158 PRINT USING " ##. 8"51

168 FRINT USING " #k## "3AM3B%:C%

178 NEXT 1
188 END
RUN
1 CINT INT FIX
2.4 2 2 2
2.1 2 2 P
1.3 2 1 1
1.5 2 1 1
1.2 1 1 1
8.9 1 (%] B
8.6 1 a a
a.3 Q 5] 5]
8.8 2 5] e
-a.3 9 -1 2
-0. 6 -1 -1 2]
-0. 2 -1 -1 (5]
-1.2 -1 -2 -1
-1.5 -1 -2 -1
-1.8 -2 -2 -1
-2. 4 -2 -3 -2

4-13

LEFTS

ol {YW:Yl LEFT$(<string>,<numeric expression>)
[ASFTeI] To return an arbitrary length of string from the leftmost characters of a string.

SANIINS B$=LEFT$(AS$.4)

RIFVGHEY The value of <numeric expression> must be in the range of 0 to 255. If
<numeric expression> is greater than the total number of characters in

<string>, the entire string will be returned. If <numeric expression> is 0, the
null string (length zero) is returned.

(See MID$ and RIGHTS.)

LEN

ZOL1UYE LEN({<string>)

[RORIHONIY To return the total number of characters in a string.

[GNI48 A=LEN(AS$)

RENUEGLES] LEN returns the total number of characters in <string>.
If <string> includes non-printing characters such as control codes and

blanks, they are not actually output but are counted as characters.

(See APPENDIX F, Character Code Table.)

4-14

LOF

[ROLMVUNM L OF (<file number>)
LTI To return the size of a specified file.

[DONIIHEY A=LOF(3)

RIENEGTE] The file specified by <file number> must have been opened in the input
mode. If the specified file number is in a ROM cartridge, LOF returns the

remaining length of the file in units of bytes. If the specified file number is in
the RS-232C port, LOF returns the number of data stored in the buffer in units

of bytes.

LOG

[ZOLA1i Nl L OG(<numeric expression>)
VG To return the natural logarithm of a numeric expression.
GWIHEY PRINT LOG(2.7812818)

FIEGTE] LOG returns the natural logarithm of the value given by <numeric
expression>.

415

MID$

TNl MID$(<string>,<expression 1>[,<expression 2>1)
PRI To return an arbitrary length of string from a string.
[FCWHEY BS=MID$(AS$,2,3)

MIDS$ returns a string of characters in the length specified by <expression 2>

from the <string> beginning with the <expression 1>th character. The
values of <expression 1> and <expression 2> must be in the ranges 1 to
255 and 0 to 255, respectively.
If <expression 2> is omitted or if there are fewer than <expression 2>
characters to the right of the <expression 1>th character, all rightmost
characters beginning with the <expression 1>th character are returned.
When the number of characters in <string> is fewer than <expression 1>,
MID$ returns a null string.

(See LEFT$ and RIGHTS.)

SAMPLE
PROGRAMME

LIST

186 A$="ABCDEFGHIJKLMN"

119 PRINT " MID$ LEFTS
RIGHTS$ “

120 FOR I=1 1O ?

130 M$=MID$(AS$.1,7)
149 L$=LEFT$(AS, DD
159 R$=RIGHT#(A$, 1>

{60 PRINT USING " & "3MF, LS. RS

1780 HEXT 1

RUN

MID$ LEFTS RIGHTS

ABCDEFG A H
BCDEFGH AB MN
CDEFGHI ABC LMN
DEFGHIJ ABCD KLMN
EFGHIJK ABCDE JKLMN
FGHIJKL ABCDEF IJKLMN
SHIJKLM ABCDEFG HIJKLMN

4-16

OCTS$

|Fe 1Yl OCT$(<numeric expression>)
VEIORIS To return a string which represents the octal value of the decimal argument.

NS PRINT OCT$(123+456)

RIEVEGIE] OCTS converts the decimal value of <numeric expression> to an octal value
and returns it as a string. The value of <numeric expression> must be in the

range of —32768 to 6553b. If the value of <numeric expression> includes a
decimal fraction, it is rounded to an integer before OCT$ (<numeric
expression>) is evaluated.

(See HEXS$.)

*PEEK

MOiINM PEEK(<address>)
WYMo To return the byte read from a specified memory location.
[CNIYEY A=PEEK(&HOCO00)

PEEK returns the byte read from the memory location specified by
<address> <address> must be in the range of 0 to 65535 (&HO to
&HFFFF). If the value of <address> includes a decimal fraction, it is rounded
to an integer.
Since the memory space from addresses &HO to &H4D is a special area
allocated for input/output, an overrun may occur simply by reading any of
these addresses.
In EPSON BASIC, when a PEEK is executed for any of the abovementioned
addresses, an FC (“lllegal function call”) error occurs. To read these
addresses, &H80 must be written into &H7E (to set MSB).

(See POKE.)

a4-17

POINT

Jol:{\{I:Nl POINT(<<horizontal coordinate>,<vertical coordinate>)
[AVIdeI To return the status of a dot at a specified location on the graphic screen.

NI PRINT POINT(100,10)

RN POINT checks whether or not a dot has been drawn at the location specified
by <horizontal coordinate> and <vertical coordinate> on the graphic screen.

With the LCD, POINT returns 1 if a dot has been set at the specified location
and 0O if no dot has been set. With the external display, color codes 0 to 3 are
returned. Please note that the LCD is different from the external dispiay in the
range within which you can specify graphic coordinates.

SAMPLE
PROGRANME

SEDEFIMT A-2
EIH FOlv. 7o
FRIMT "aRCH
FoR '-:-‘=EJ T ¥
FOR #=B 70 17
Fixs "’\"F’I’IINT'ZI%s'-r')
HEXT ®.¥
FOR V=0 TO 7
PRINT
FOR w=8 TO 17
IF F{X.%y THEN as="1}
H ELSE H$_ll "
218 PEINT A%
228 MERT HaY

Lo b s (0
T O T S T

Fol bbb ok e Bk fed ek et et ek
r.
%

[t e BN i R

LR W e R n d

4-18

POS

HORIULAYE POS(<digit>)
SO RI To return the horizontal position of the cursor on the virtual screen or the

horizontal position of the printer head.

DGV X=POS(0)

The value of <digit> must be in the range of 0 to 16. If 0 is specified, POS
returns the horizontal position of the cursor on the virtual screen.
If any of the integers from 1 to 16 is specified, POS returns the number of
characters stored in the buffer (namely, the number of characters that has
been output following the output of the L.F code and before execution of this
function) on the file opened using the integer as a file number.
These numbers also correspond to the horizontal positions of the printer
head.

{See CSRLIN and LOF.)

RIGHTS

WOLIIENE RIGHTS$(<<string>,<<numeric expression>)

[V To return an arbitrary length of string from the rightmost characters of a
string.

[GNIHEY PRINT RIGHT$(”ABCD”,3)

The value of <numeric expression> must be in the range of 0 to 255. If
<numeric expression> is greater than the total number of characters in
<string>, the entire string will be returned. If <numeric expression> is 0, the
null string (length zero) is returned.

{See LEFT$ and MIDS$.)

419

RND

IZeI:\ Yl RNDI[{<numeric expression>)]
WA EI To return a random number.

CWIIHEE A=RND(1)

HEANEGLEESY RND returns a random number between O and 1. The random number
generated varies with the value of <numeric expression> as follows.

® |f <numeric expression> is negative, a new sequence of random numbers
is generated.

® |f <numeric expression> is 0, the last generated random number is
repeated.

e |f <numeric expression> is positive, the next random number in the
sequence is generated.

If <numeric expression> is omitted, the next random number in the
seguence is also generated. The same sequence of random numbers is
generated each time a RUN or CLEAR statement is executed, if the random
number generator is not reseeded by a RANDOMIZE statement.

(See RANDOMIZE.)
PROGRAMME

LIST

168G DEFINT H.B

118 DIM B(128:

128 INPUT "MUMBER OF REP
ETITIONS "3

138 CLs

148 FOR I=8 TO A

158 H=RHMD*128

168 BONI=B(NI+1
178 PSET N 31-B(H>)
188 NEXT

>

RUN

HUMBER OF REPETITION
5 7 2008

medicaldall bbb

4-20

SGN

FORMAT
PURPOSE
EXAMPLE

SIN

SGN(<<numeric expression>)
To return the sign of the value of a numeric expression.

B=SGN(A)

If the value of <numeric expression> is positive, SGN returns 1. If the value
of <numeric expression> is 0, SGN returns 0. If the value of <numeric
expression> is negative, SGN returns —1.

FORMAT
PURPOSE
EXAMPLE

SIN(<numeric expression>)

To return the sine of a numeric expression.

PRINT SIN(3.1416926/2)

SIN returns the sine of <numeric expression> in radians.

(See COS and TAN.)

4-21

SPACES$

Je:1l:Yl SPACES$(<numeric expression>)
WLIIOI To return a string of spaces of a specified length.
GRS As="A"+SPACES$(10)+“C”

NN E] SPACES returns a string of spaces of the length specified by <numeric
expression>. The value of <numeric expression> must be in the range of 0

to 255.

(See SPC and TAB.)

SPC

ZOIILYM SPC(<digit>)

[MVAOBI To output a specified number of bianks.
[GWILEY PRINT SPC(10);”A”

MARGIE] SPC outputs blanks in the number specified by <digit>. This function may
only be used in output statements such as PRINT. The value of <digit> must

be in the range of 0 to 255.

(See SPACES$ and TAB.)

4-22

SQR

[F IV Yl SQR{(<numeric expression>)
VLA To return the square root of a numeric expression.

[T IL4EY A=SQR(2)

EIHYEGIE] SOR returns the square root of <numeric expression>.
The value of <numeric expression> must be greater than 0.

STRS$

HOIULYM STR$(<numeric expression>)
WYildOT] To return a string representation of the value of a numeric expression.
D GWIKEY A$S=STR$(123)

RIFVUEGLE] STR$ converts the value specified by <numeric expression> to a string. For
<numeric expression>, you can use any type of numeric constants.

(See STRINGS$ and VAL.)

4-23

STRINGS

STRING$ (<integer expression>, | <string expression>)
<numeric expression>>

To return a string of specified characters.

PRINT STRING$(10,65)

STRINGS$ returns a string of characters specified by <string expression> or
<numeric expression> in the length specified by <integer expression>. If
<string expression> is specified as a string of characters to be returned, all
characters having the first character of the string are returned.

If <numeric expression> is specified, all characters having ASCII code
specified by the numeric expression are returned. The value of <numeric
expression> must be in the range of 0 to 255.

(See STRS.)

A4-24

TAB

TAB(<numeric expression>)

To space to a specified position on the line where the cursor is currently
positioned.

PRINT TAB(10); “ABC"”

TAB is used only in output statements such as PRINT and LPRINT.
TAB outputs blanks from the current cursor position to the position specified
by <numeric expression> counted from the left-hand end on the virtual
screen.

The value of <numeric expression> may be in the range of 0 to 255 with 0 as
the leftmost position. In other words, value of <numeric expression>
corresponds to the remainder when it is divided by the number of characters
to be displayed horizontally. If the position specified by <numeric
expression> is at the left of the current cursor position, TAB goes to that
position on the next line.

Please note the difference between the SPC function and the TAB function.

(See SPC))

TAN

({OLVIEYM TAN(<numeric expression>)
WU To return the tangent of a numeric expression.
WIS A=TAN(3.1416/4)

MIVBRGLEET TAN returns the tangent of the value of <numeric expression> in radians.

{See COS and SIN.)

4-25

*TAPCNT

ROLAWYANM TAPCNT

FIIETIeId To return the value of the microcassette drive counter.
[CNWVIHEY PRINT TAPCNT
A=TAPCNT

TAPCNT function is used to read the value of the microcassette drive counter.
The returned value is in the range of —32768 to 32767. This counter value is
always returned as positive after the counter has been reset by a WIND
command. By assigning a value to TAPCNT, you can set the counter value.

{See WIND.)

SAMPLE
PROGRAMME

166 TAPCNT=@

116 OPEN "0",#1,"CASA: TEST"
129 FOR I=1 TO 10

Z0 PRIMTH#1,131%1

148 MEXT

158 CLOSE

169 WIND B

172 OPEM "I",#1,"CASB:TEST"
188 IF EOF(1) THEN 220

199 IHPUT#1,A,B

269 PRINT A8

219 GOTO 180

228 CLOSE

23@ END

OO NOUNBWUN
w
o

4-26

TIMES

KL TIME$="HH:MM:SS”
VeI To return the time kept by the internal calendar clock.
DOEWIEEY PRINT TIMES

TIMES$ displays or sets thé time kept by the internal clock of the HX-20. The
time is set or displayed in the format "HH:MM:SS” where the value of HH
ranges from 00 to 23 and the values of MM and SS range from 00 to 59. Once
the correct time has been set, you are not required to set the time again, as
the HX-20 clock keeps track of the time and date.

{See DATE$ and DAY.)

USR

RO USR[<digit>l({<argument>) ‘
[MYAIHOIS To call machine language subroutine defined by DEFUSR statement.

DGR A=USR 1(B)

USR calls your machine language subroutine {user-defined function) with

<argument>. Before calling the user-defined function, it must have been
written into the memory, and its execution starting address must have been
defined by the DEFUSR statement.
A maximum of 10 user-defined functions can be set by <digit> whose value
is in the range of 0 to 9 and corresponds to the digit supplied with the
DEFUSR statement for that routine. If <digit> is omitted, USRO is assumed.
With <argument>, you can transfer a value from EPSON BASIC to your
machine language subroutine.

(See DEF USR and Chapter 5, “Machine Language Subroutines”.)

4-27

VAL

oYYl VAL(<string expression>) .
HVETIeI8 To return the numerical value of a string expression.

[N A=VAL(“—123")

If the first character of <string expression> is not +, —, &, ., or a digit, VAL
(<string expression>) = 0.
If a character other than digits (0 to F in hexadecimal numbers and 0 to 7 in
octal numbers) appears, the following characters are ignored. Blanks in
<string expression> are also ignored.

(See CHR$ and STR$.)

VARPTR

ASLVILYE VARPTR(<variable name>)
(MBI To return the address of a variable or array.
CWIYEE PRINT HEX$(VARPTR(A))

Any type of <variable name> (numeric, string, or array) can be specified. A

value must be assigned to the variable specified by <variable name> before
executing VARPTR.
The returned address will be an integer in the range of —~32768 to 32767. If a
negative address is returned, obtain the actual value by adding it to 65536.
Whenever a value is assigned to a new variable other than arrays, the
addresses of the arrays change. Therefore, all simple variables must be
assigned before calling VARPTR for an array.

(See Chapter 5, “Machine Language Programmes.”)

4-28

CHAPTERS
Additional Information

5.1 RAM files

RAM (random) files are one of the many features of EPSON BASIC.

With RAM files,

e Data can be accessed randomly.

e Data can be changed freely.

o High access speed is assured as compared with the I/O transfer speed to and from
peripheral devices.

Because of the above advantages, RAM files may be regarded the same as array variables.
RAM files also feature the following:

® Data is retained even after the power switch is turned OFF.

e Data can be shared by plural programmes.

In view of the above features, RAM files are ideal for data to be handled more frequently

than those in sequential files, and are thus useful for:

® Storage of variable tables, conversion tables, etc., to be used constantly. (Scientific
calculations)

® Storage of data necessary for daily transaction processing (Business management)

In EPSON BASIC, five separate programmes can be stored simultaneously. However, RAM
files must be shared by these five programmes and cannot be used at the discretion of
plural programmes. In using PUT% statments, be careful so that data files may not be
accidentally destroyed by other programmes.

In fact, RAM files as a whole occupy a single area, but the RAM file area may be used as
separate files apparently using a DEFFIL statement. The DEFFIL statement specifies the
location of the first record in the RAM file area and the locations of records to be read or
written by a GET% or PUT% statement after the execution of the DEFFIL will be shifted
relatively.

The type of variable of the data to be read by a GET% statement must match that of the
data written by a PUT% statement. The number of bytes occupied on the memory space
by each type of variable is different as follows.

Integer variable 2 bytes
Single precision variable 4 bytes
Double precision variable 8 bytes
String variable Indefinite

For this reason, if the data written as an integer value is to be read as a double precision or
single precision value, the result will be an entirely different value.

The length of one record is determined by a DEFFIL statement and within that record,
numeric variables occupy the length specified for each variable type. The remaining length
of the record is allocated to string variables. This is because of the fact that the length of a
string variable is indefinite, and in GET% and PUT% statements, string variables can be
used only after numeric variables.

5-1

Example:
100 DEFFIL 20, 200
20.:0 PUT% 0, Al, B#, C%, D$
30?0 GET% O, E!, F#, G%, H$
460 END

In this programme, the location of a file is as shown below.

Top of RAM file

~—— 200th byte

Record 1 -—— End of RAM file

\ v
20 bytes
The record length of, for example, Record 0 is allocated as follows.

4 bytes 8 bytes 2 bytes

\ AN J\/_/k —~ —

Al B# C% Ds$

Execution of the programme results as follows.

El=Al, F#=B#
G%=C%, H$=D$

As an example of the use of a RAM file, let’s prepare a file to record the individual statistics
for each of the players of a baseball team, using the player's uniform numbers as file
numbers to reference the files.

5.2

The first thing you must consider is the record length for each player. In this example, let's
deal with the At-Bats, Hits and RBI (Runs Batted In) for each player. You can handle all three
values as integer values. You will need to record the player names in aiphabetic characters.
To this end, let's have a string variable of a maximum of 20 bytes.

AB (At-bats) 2 bytes
H (Hits) 2 bytes
RBI (Runs Batted In) 2 bytes
Player Name 20 bytes
Total 26 bytes

AN /

R/_/;.V_/
2bytes 2bytes 2bytes 20 bytes

Next, you must determine the total file length
required for the team’s statistics. You already
know the record length for each player. All
that you must do here is to multiply the length
of the individual record by the number of
players on the team. Assuming that the team
has 25 players, the total file length will be as
follows.

26x25 = 650 bytes

You can now write programmes for recording
the individual player's statistics according to
the required functions.

5.1.1 Creation of a RAM file

Though somewhat unusual, let’s limit the player’s uniform numbers to the range 0 to 24. In
this programme, you only need to write the AB, H and RBI data available for each player up
to this point.

188 CLEAR 260.650

118 DEFINT U, &:H.R

128 DEFFIL 25.0

1|31C1 INPUT "UNIFORM HNO. "

148 IF U>24 THENW 218

138 INPUT "MAME "3 NRS$
168 INPUT "AT BATS “3A
178 INPUT "HITS “3H
188 INPUT "RBI "3

193 PUTX U, A H.R.NAS
288 G0TO 138
216 END

5-3

Even if you input a player name longer than 20 characters, no error will occur. However, as
only 20 bytes are available for the player name field on a record in the RAM file, only the
first 20 characters of the name will be stored. Since each of the three variables (AB, H and
RBI) requires 2 bytes, the variables are declared as integer type by a DEFFINT statement.

5.1.2 Retrieval and updating of data in RAM file

This programme is used to read the data written into the RAM file by the programme in the
preceding example. Since each player name is already entered in the file, all that is
necessary for you to retrieve the data relating to a player is to input the player uniform
number. If you type “Y” following the displayed data, the individual record can be updated.
The newly entered statistics will then be added to the statistics currently recorded.

228 CLEAR 263,650

238 DEFINT UsAsH R

248 DEFFIL 26.8

258 PRINT

268 INPUT "UNIFORM MO, "
st

279 IF U>25 THEW END
208 GET= L A-H-E.HA$

298 All=H-CSNG{AY

88 PRINT NA$

316 PRIMY "AT BATS "in
328 PRINT TABC1@2; "HITS
it ; H

338 PRINT "RBI "3

746 -PRINT TABC16); "AlERA
GE "ray

358 PRINT "URDATE <Y/MN"

368 IF IHPUT$C1IC> "y G0

T 238

I78 PRINT

Zea INPUT "AT BATS “3kA
96 IMPUT “HITS “ixH
488 INFUT "REBI "3 ER

418 PUTY U a+ad: HeHR . R+R
470 BOTO 280

In addition to the two sample programmes given, you can also write a programme to list the
players’ performance records in the order of batting average or a programme to select and
list the individual records of, say, top 5 players. With these programmes and data files
prepared by the HX-20, you can manage your baseball team practically.

5.2 Sequential files

If you consider the recording of music on an audio cassette, you will realize that musical
numbers are recorded in sequence and that to listen to a particular musical number, you
must advance the tape to the section of the tape where that number is recorded. A
sequential file operates on the similar principle except that, instead of music, a sequence of
data is recorded on the tape.

The speed and flexibility of RAM files are very attractive, but their memory capacity limits
the amount of data that can be handled. For this reason, much data cannot be handled on
each RAM file.

Also, when using a RAM file, you must write a programme by taking the internal file
structure into account.

In contrast, sequential files feature ease of operation in addition to:

e Unlimited data handling capacity
® Simple file structure

However, despite such advantages, sequential files have the following drawbacks as well.

e Data can only be accessed in sequence.
e Data can therefore not be retrieved quickly.
® Partial changes to the data file cannot be effected.

When you prepare a programme using a RAM or sequential file, the relative merits and
demerits of both types of files must be weighed before making your selection.
To use a sequential file, you must observe the following procedure.

(1) Open the file.

(2) Input data from the file to memory using an INPUT# statement, or output data from
memory to the file using a PRINT# statement.

(3) Close the file.

Each of sequential files are assigned a file number when they are created and all
subsequent /O operations to and from these files (using INPUT#, PRINT#, etc.) are
performed by specifying a particular file with this file number. Therefore, no two files can
exist at the same time under the same file number. Also, once a file has been OPENed
under a certain file number, no other files can be opened using that number until the file
first opened is closed.

Data to be read with an INPUT# statement must match the data written with a PRINT#
statement in both the variable type and the number of variables. In a sequential file, data is
read in sequence from the beginning of the file. Therefore, if there is any difference in the
number of variables, subsequent INPUT# statement will read all the data in incorrect
sequence. If there is a difference in the type of variable, a TM (“Type Mismatch”) error will
occur.

5-6

After the I/O transfer using the sequential file, you must always execute a CLOSE (or END)
statement. With EPSON BASIC, data transfer between the HX-20 and peripheral
equipment is performed in units of 266 bytes. For example, when writing data into the file,
a write operation will not take place until 256 bytes of data have accumulated in the buffer.
If a CLOSE (or END) statement is not executed at the end of the programme, data will
remain in the buffer and not be output. In this case, the file will also be left incomplete
without a delimiter being written at the end of the file.

As an example of the use of a sequential file, let's write a programme for an address
directory. In the preceding example of RAM file, remember, you had to carefully consider
the record structure such as record description items and record length. However, with
sequential files, as there are no particular restrictions on the amount of data, you are only
required to decide on the record description items and the order in which you wish to file
them.

5.2.1 Creation of a sequential file

This programme is to record a list of names, addresses, phone numbers and birth dates on
an audio cassette tape.

Although you can write such data as name, address, etc., all together as a string, it is better
to record by delimiting these description items for subsequent data utilization.

168 OPEN"O".#1,"CAS1:aDR
118 PRINT

128 IMPUT "NHAME ":HNAMES

138 IF NAME$="" THEN 256
4@ IMPUT "ADDRESS":ADRS$
156 THPUT "TELEFHONE "3

EL#

168 PRINT"DATE OF BIRTH"
iva INFUT " YEAR";

128 INPUT " MONTH":M

19 INPUT " DAY"3D

2688 PRINTH1, NAMES

210 PRINT#1, ADRS$

228 PRINT#1.TELS

270 PRINTH#1.YiM:D

243 GOTO 11ie

238 CLOsE

268 EHD

If you observe the operation of the audio cassette, you will probably notice that the tape
does not advance all the time. This is because of the action of the buffer described in the
preceding section. That is, a write operation is performed only after a specified amount of
data has accumulated in the buffer. After you input all the data for the required number of
persons, press only the key at line 120 to assign a null string to A$. This will
branch the programme to line 250 to CLOSE the file. This step cannot be skipped.
If you press key to terminate the programme after all the data input has been
completed, data will remain in the buffer and the file will not be closed.

5-6

5.2.2 Retrieval of data from sequential file

To demonstrate the advantages of using this computer, rather than simply outputting the
recorded data as it was entered, let's write a more useful programme to output selected
data from the file, for example, the data of only those people born on a certain year.

108 OFEN "I":#1,"CAS1:AD
RS"

118 PRINT "PEOPLE BORN U
HAT YEAR?"

128 INPUT N

138 LPRINT " #%% BORN IN
i ; N; 'l***"

149 IF EOF(1> THEN GOTO

233

158 IHPUT#1, NAMES, ADRS, T
EL#.Y,M,D

168 IF HCOY GOTD 148

178 LPRINT

186 LPRINT NAMES

199 LPRINT ADR$

268 LLISTNT TEL$

218 LPRINT "BORN "sMs"/»
s tomey

220 GOTO 148

23@ LFRINT

248 LPRINT " %ok END OF

RETRIEUAL *k#

250 CLOSE

268 END

In the preceding file creation programme, you have indicated the end of file by pressing
key. However, when reading a file, this determination is made by the EQOF
function. If you omit line 140 in the above programme, an IE (“Input past end”) error will
occur.

5.2.3 Correction of data in sequential files

In a sequential file, you cannot change only a portion of the data recorded on a file. To
correct the file, you must prepare another file and write correct data into the new file while
reading the old data file. As the HX-20 allows you to use both a microcassette drive
("CAS0:”) and an audio cassette (“CAS1:"), you can perform the file updating utilising
these two units.

b5-7

186 CHT=TEPCHT

118 OFEW "I",#1,"CASI:AD
E:Sll

128 DPEN "0",#2."CASD: WO
RK"

138 IF EOF(1) GOTO 320
14@ IMPUT #1.HAMES, ADRS.
TEL;* "l" bl M* D

156 FRIMT NAME$

168 PRINT ADR$

1768 PRINT TEL$

185 PRINT “BORN "iM3"/":
D; ll._,~ll ; L‘}

199 PRINT DO YOU WISH T
0 MAKE CORRECTIONS C(Y/ND
268 IF INPUT$C1X>"Y* GO
TO 298

21@ PRINT

228 INPUT "NAME "3 NAY
MES

236 INPUT "ADDRESS ":AD
R

246 [MFUT "TELEPHGNE";TE

250 PRIMT "DATE OF BIRTH

£@ INPUT * YEAR":Y
7O IMPUT " MONTH":M
=R INPUT D3 D
Q@ PRINT#2,HAMES, ADRE, T

308 PRINT#2,Y:iM:D

318 aaTo 138

Zz@ CLOSE

338 WIHD CHT

Z48 PRINT "PLEASE REWIND
THE CHRSSETTE®

58 PRINT

IEB PRINT "IF OK. PLEASE
IHPUT wyuw

37 IF INPUTS$C1X><>"Y" GO

TO Za8

g?? OFEN "O".#1:"CAS1:AD

E?? QOFEN “1".#2,"CASAI W0

468 IF EOQF(Z> GOTO 446

418 INFUT#H#1, NAMES, ADRS, T

EL$.¥.M:D

428 PRINT#2, HAMES, ADRS. T

EL%$.Y:M,D

438 GOTO 468

443 CLOSE

3568 END

58

The actual transfer of data from the old to the new file terminates at line 320. In this state,
the new file is in the microcassette drive. For subsequent data file utilisation, you must
transfer the data in the new file back to the file in the audio cassette. The tape in the
microcassette drive can be rewound using a WIND statement in a programme. The audio
cassette, however, must be operated manually. In this sample programme, two files are
used so that a larger amount of data may be stored.

If the amount of data to handle is small and all the data can be stored in the memory at one
time, corrections of data file can be performed just the same as the RAM file.

5.3 Machine language programmes

In EPSON BASIC, the USR function and the EXEC statement are provided as functions to
call user programmes written in machine language. USR, like other functions, can pass data
using an argument. The EXEC statement, however, has no function to pass any variables.
In BASIC, even if a programme containing a bug is executed, execution stops but the
programme itself will not be destroyed. However, in a machine language programme, even
if a single bit is incorrect, all the programmes (including BASIC programmes) may be
destroyed.

5.3.1 Memory allocation

When using user programmes written in machine language, memory space must be
secured so that BASIC programmes and data are protected and that machine language
programmes are not destroyed by any BASIC programmes, In EPSON BASIC, machine
language programmes are placed before the BASIC programme area and the memory
space for machine language programmes is secured using a MEMSET command.
Therefore, you must execute this MEMSET command before loading any machine
language programme. '

The execution of the MEMSET command secures the machine language programme area

and at the same .time moves BASIC programmes. Therefore, BASIC programmes
previously stored in memory are protected against destruction.

5-9

ol

st

.

sl

OA3F

004D

0000 Before MEMSET 0000 After MEMSET
execution execution

5.3.2 Writing and loading programmes

A machine language programme is loaded into the memory using the MONITOR function
of the HX-20. Short programmes can be written into the memory using a POKE statement.
A machine language programme you have written can also be stored as a machine
language programme file in the same manner as BASIC programmes using a SAVEM or
LOADM command.

The HX-20 has a vacant location for an expansion ROM socket to enable you to store your
completely debugged programmes in the expansion ROM, so that you can always use
them as the utility software of the HX-20. You can also store less frequently used
programmes in the ROM cassette as a programme file.

In this way, programme loading time can be reduced greatly and the operability of the
HX-20 can be improved as well.

5.3.3 USR function

The format of the USR function to call a machine language programme is as follows.
USRI{(<digit>)}{<argument>)

<digit> may be an integer from 0 to 9 and must correspond to the digit supplied in the

DEFUSR statement. <argument> may be any numeric or string expression.

The USR function has one argument. The accumulator A contains a value that specifies the
argument type.

5-10

The values used and their meanings are as follows.

Value in accumulator Argument type
2 Integer
3 String
4 Single-precision real number
8 Double-precision real number

If the argument type is numeric, the value in the index register shows the address of the

“floating-point accumulator” where the argument is stored.

This floating-point accumulator does not refer to the memory location where a variable
itself is stored, but refers to a special area used when BASIC performs an arithmetic
operation. The actual value is stored in the “floating-point accumulator” in a different form

depending on the argument type as follows.

e When the argument is an integer:

« Address indicated by the index register

Upper 8 bits

Lower 8 bits

o \When the argument is a single-precision real number:

Exponent

« Address indicated by the index register

Sign bit and upper 7 bits of
mantissa

Middle 8 bits of mantissa

Lower 8 bits of mantissa

¢ When the argument is a double-prec

ision real number:

Exponent

« Address indicated by the index register

Sign bit and upper 7 bits of
mantissa

Lower 8 bits of mantissa

® When the argument is a string:

The value of the index register indicates the address of 3-byte data called “string

descriptor”.

Length of string

Upper bits stored address

Lower bits stored address

The string descriptor is a pointer which indicates the address where a string type data is
actually stored. By referring to the address indicated by this string descriptor, you can find

the data passed as an argument.

«— Address indicated by the index register

When the USR function returns a value to BASIC, data must be stored in the same format
" in the location where the argument was stored (i.e., the location indicated by the
floating-point accumulator or string descriptor). Therefore, the type of value retured from
the USR function must be the same as that of the value specified as the argument.

To return to a BASIC programme from the USR function, machine language subroutine RTS
(&H39) is used. For this reason, the value of the stack pointer when programme control is
returned to BASIC must be the same as that when the USR function was called.

5.3.4 EXEC statement

Machine language subroutines can also be executed by an EXEC statement.
EXEC[<address>]

When a machine language subroutine is loaded into memory using a LOADM command, or
when the execution starting address has been specified by EXEC, <address> can be
omitted.

EXEC only executes the programme from the specified address and has no function to pass
an argument. When variables are to be passed between a BASIC programme and a
machine language programme called by an EXEC statement, it is performed through the
direct read and write of the variables stored in memory. You can do this in the following
ways.

(1) To POKE and PEEK the specified addresses of the machine language area using the
BASIC programme.

(2) To directly read and write data in the BASIC varlable area using the machine language
programme.

When you use method (2), you must check beforehand the addresses of the variables to be
written or read using the VARPTR function.

5.3.56 VARPTR function

With the VARPTR function, you can check at which address in memory your specified
variable is stored. VARPTR is used to pass a variable to a machine language programme to
be called by an EXEC statement, or to pass two or more variables using the USR function.

When using the VARPTR function, a value must have been assigned to the variable
specified as the argument before execution of VARPTR.

The value returned by the VARPTR function is the top address of the specified variable data.

If the variable is a string, the data is not the value of the variable but is a <string descriptor>
which is a pointer indicating the address where the string type data is stored.

B-12

When a variable is stored in memory, the variable type, length of variable name and variable
name (maximum 16 characters) are stored immediately before the value of the variable.

(1) Variable type
Using the first 4 bits of the first byte of data, variables are classified according to the
length that the data occupies, as follows.

: Integer

: String

: Single-precision real number
. Double-precision real number

0 WN

(2) Length of variable name
Using the last 4 bits of the first byte of data, the actual length of the variable name
minus one is stored. Therefore, when the variable name is a single character, 0 is stored
as the value.

(3) Variable name
Starting from the second byte of data, the variable name of the length indicated in (2)
above is stored in ASCIl format. Although the variable name is stored in a maximum of
16 characters, only the required number of bytes are used.

o When the variable type is an integer:

0010 [Length of variable name — 1
First character of variable name

i Variable length

Upper 8 bits « Address indicated by VARPTR
Lower 8 bits

® \When the variable type is a string:

0011 [Length of variable name — 1
First character of variable name

} Variable length

Length o.f string « Address indicated by VARPTR
Upper bits stored address
Lower bits stored address

® When the variable type is a single-precision real number:

0100 |Length of variable name — 1
First character of variable name

Variable length

Exponent) « Address indicated by VARPTR
Sign bit and upper 7 bits of mantissa
Middle 8 bits of mantissa
Lower 8 bits of mantissa

K13

e \When the variable type is a double-precision real number:

1000 [Length of variable name — 1
First character of variable name

i Variable length

Exponent <« Address indicated by VARPTR
Sign bit and upper 7 bits of mantissa

Lower 8 bits of mantissa

Real-numbers type data are always normalized to omit the most significant bit of the
mantissa. Also, whatever the value of the mantissa may be, if the exponent is 0, the value
of the mantissa is assumed as 0. Compared to the index register which points the address
of the floating-point accumulator when the USR function is called, the value of a variable
specified by the VARPTR function indicates the address where the variable is stored. Do
not confuse these two types of functions. Be especially careful with integer variables, as
they are stored somewhat differently from other variable types.

5.4 How to use the RS-232C port

The HX-20 incorporates an RS-232C interface to allow communication with external
devices. The RS-232C port in the HX-20 is normally used to connect an external printer with
the HX-20. RS-232C is an EIA Standard for the interface between a MODEM and the
associated data terminal equipment.

With this RS-232C interface, the HX-20 can communicate directly with other computers. By
connecting an acoustic coupler to the RS-232C interface, the HX-20 can also transfer data
to and from remote locations via subscriber lines.

The RS-232C standard is widely in use by various kinds of communications equipment.
However, as this standard merely prescribes electrical characteristics, use of signal lines,
transmission procedures, etc., differ from one type of equipment to another. Therefore,
when connecting an external device to the HX-20, you must carefully check the external
device for agreement of interface conditions with those of the HX-20 so that proper
communications can be established under the same interface conditions.

514

With the HX-20, this setting of interface conditions can be performed using BASIC. (See
OPEN"COMO:"). Once the uniform interface conditions have been established between
the HX-20 and the external device, all other procedures are the same as when you use
normal files. If you specify <file number> in a programme statement, you can perform /0
operations using PRINT# and INPUT# statements. With the HX-20 in the direct mode, you
can directly transfer programmes between the HX-20 and external devices using
LIST*COMO:” and LOAD“COMO:" commands.

NOTE:

If you execute an output command by specifying “COMQO:” as the device name when no
external device is connected to the RS-232C port or when the connection between the
HX-20 and the external device is faulty, the operation of the HX-20 may terminate. Should
this happen, press key, to return the HX-20 to command level.

Also, when a long line of characters is transferred without specifying the print width for
“COMO: ", the default value will be in effect and automatic line feed will take place at every
80 characters. When you send a long string exceeding 80 characters, you must first
execute WIDTH “COMO:", 255 to set the print width as infinite.

5.4.1 Interfacing with optional devices

All the devices available as the options to the HX-20 have standardised signal lines.
Therefore, as long as the exclusive interface cables specified by EPSON are used, you are
not required to have a special knowledge of the RS-232C interface.

(1) Interfacing between two HX-20 units

You must use interface cables (optional cable set #715) when interfacing your HX-20
with another HX-20 unit. In this method, you do not need to set the interface conditions
and can omit <BLPSC>.

NOTE:

When directly transferring programmes using a LIST “COMO:" or LOAD “COMO: "
command, data may be lost during the data transfer if the data processing speed of the
receiving HX-20 cannot catch up with the data transfer speed of the transmitting
equipment. To transfer programmes properly in such a case, be sure to lower the bit
rate of the transmitting equipment.

(2

—

Interfacing with a terminal printer

When connecting an external terminal printer to the HX-20, the printer must be
equipped with an RS-232C interface. (For any of EPSON MX series printers, use
interface board #8141 or #8145.) You must also use special interface cables (cable set
#714).

There are two methods of using a terminal printer depending on whether you use the
interface conditions of the HX-20 or those of the terminal printer.

® When setting the interface conditions at the terminal printer:

You need not set the interface conditions <BLPSC> for your HX-20. By simply
specifying <device name> as “COMO: " in either direct mode or programme mode, you
can use the terminal printer just the same as the built-in microprinter “LPTO:”.

b-15

Set the interface conditions of the terminal printer as follows. (For details, see the user's
manual of the applicable interface board.)

Bit rate

Word length
Parity bit

Stop bit length

4,800 bps
8 bits
No parity
2 bits

o When setting the interface conditions at the HX-20:

If you specify <device name> as “COMO:", you must set the interface conditions

<BLPSC> as follows.

Bit rate

Word length

Parity bit

Stop bit length
Control lines active

Example:

Bit rate

Word length

Parity bit

Stop bit length
Control lines active

NOTE:

Set to the same parameters
of the terminal printer.

Specify “B” (hex) when using an EPSON MX series
interface board.

300 bps

7 bits

Even parity

1 bit

Handshaking by DSR signal (To match to the factory-
set conditions interface board #8145, specify
“COMO0"(27E1B)".)

The maximum bit rate of the HX-20 is 4,800 bps. If the bit rate of the printer has been set at
9,600 bps, you must change the setting of the printer to 4,800 bps, as you cannot make this
parameter compatible with that of the printer at the HX-20.

(3) Interfacing with an acoustic coupler
To interface the HX-20 with the optional acoustic coupler CX-20, you must use special
interface cables (optional cable set #706).
When using the acoustic coupler, the interface conditions of both the HX-20 and CX-20
must be set to match to those of the transmitting/receiving equipment.

5-16

Word length -~ -
9 Set to the same parameters of the transmitting/receiving

Parity bit .

Stopybit length equipment.

Bit rate Must be the same as that of the transmitting/receiving
equipment but must be 300 bps max. due to limitations of
telephone lines. (0 < B < 2)

Control lines active As all control lines are normally used, specify “2” (hex).

5.4.2 Interfacing with other external equipment

To interface the HX-20 with external devices other than those specified as the options to
the HX-20, you must have a deep knowledge of the RS-232C interface. You can set the bit
rate, word length, parity bit and stop bit length to match to those of the device to be
connected to the HX-20. But the signal lines used, the method of handshaking, etc. are
different from one device to another.

Simply connecting the signal lines of the same name will not assure successful
communication between the two devices. You must have correct understanding of the
function of each signal line.

The HX-20 uses the following 9 signal lines.

Pin No. Signal . Signal direction Function
1 GND - Signal GND
2 TXD Out Transmitted data
3 RXD In Received data
4 RTS Out Request to send
5 CTS In Clear to send
6 DSR In Data set ready
7 DTR Out Data terminal ready
8 CD In Carrier detect
E FG - Protective GND

® Pin No. 1 — GND
Signal of zero potential which serves as reference for all other signals.
® Pin No. 2 — TXD
Output signal line to send data from the HX-20. Data is output in negative logic.
® Pin No. 3 — RXD
Input signal line to receive data by the HX-20. Data is input in negative logic.
® Pin No. 4 — RTS
Output signal line to request the grant for data transmission. When this signal (normally
of positive potential) is active, it indicates that the HX-20 is ready for data transmission.
By specifying “C” in <BLPSC> setting, it can be changed to that a signal of negative
potential has significance.

5-17

® Pin No. 56 — CTS

Input signal line to receive the grant for data transmission. if this signal line is at positive
potential, the HX-20 judges that the request for data transmission has been granted, and
starts data transmission.

If the potential of this signal changes to negative, the HX-20 stops transmission and
waits until the signal potential becomes positive to restart transmission. By specifying
“C” in <BLPSC> setting, this signal can be ignored. If it is done so, the signal potential
is always assumed as positive. When interfacing with equipment other than the acoustic
coupler, this signal is often directly connected to the RTS signal, but in the HX-20, data
transmission and reception can also be controlled by this signal.

® Pin No. 6 — DSR

Input signal line used by the HX-20 to find if the counterpart is ready to receive data.
When the potential of this signal is positive, the HX-20 judges that the counterpart is
ready to receive data. Therefore, data tranmission can be terminated by changing this
signal potential to negative. This is the main signal used by the HX-20 to control the
transmission of data. By specifying “C" in <BLPSC> setting, this signal can be ignored.
If this is done, the potential of this signal is always assumed as positive. This signal is
originally intended to function as a response signal to the DTR signal to detect whether
or not the communication circuit is ready. However, in the HX-20, this line is used as an
input signal line to detect the BUSY state of the transmitting/receiving peripheral.
Therefore during data transmission, the HX-20 always monitors this control line.

® Pin No. 7 - DTR

This signal line is intended to output a signal by the HX-20 to the peripheral devices to
request information as to whether the communication circuits are ready or not. This
information request is made when the level of this signal is positive.

In the HX-20, this signal line has another function. When the HX-20 is to function as a
receiving equipment, this output signal informs the transmitting equipment of whether
or not the HX-20 is ready to receive data. When the potential of this signal is
high-impedence, the HX-20 is not ready to receive data, that is, BUSY.

NOTE:

DTR is connected to the power supply line of the RS-232C and high-speed serial
interface driver. For this reason, if the RS-232C interface or high-speed serial interface is
turned ON, DTR signal will automatically be activated.

® Pin No. 8 — CD

Input signal line to detect that data is being sent from the transmitting equipment to the
HX-20. When the potential of this signal is positive, the HX-20 judges that data is to be
sent from the peripheral connected to the HX-20. This control line is required when the
HX-20 is connected to the acoustic coupler. In all other cases, this signal can be ignored
by specifying “C” in <BLPSC> setting.

5-18

In the HX-20, data transmission and reception can be controlled by signal lines CTS and
DSR. You can find the status of data reception by signal line DTR. When you connect the
HX-20 to any other external device, you must check carefully the functions of all the signal
lines provided in the device and make required connections based on the function and not
the nomenclature of each line.

5-19

APPENDIXES

/0 11

AO 52

BD 58

BF 51

BN 50

BO 61

BS 9

APPENDIX A Error Messages

Division by zero

A division by zero is encountered in an expression.

® The divisor in an expression is zero.

® Division by an undefined variable is encountered in an expression.
® The argument of TAN function is /2.

File already open
A file of the specified number is already open.
o A file opened has not been closed in direct mode.

Bad data in file

Data format in a file is incorrect.

® An attempt is made to read a programme file in binary format as a data file in
ASCHl format. ‘

® An attempt is made to read a machine language programme file as a data file.

Bad file mode

A file mode is incorrect.

® An attempt is made to open a file with a file mode not allowed for that device
(e.g., open the printer for the input mode, etc.).

® An attempt is made to execute an I/0O command that is inconsistent with the
mode in which the file was opened (e.g., output data to a file opened for the
input mode, etc.).

Bad file number

A file number is incorrect.

® A file number not in the range 1 to 16 is used in an OPEN statement.
® A file number not in the range 1 to 16 is used in an /O statement.

Buffer overflow

An overflow occurred in the input buffer.

® Data input from the RS-232C port ("COMO: ") is overflowed. (In data transfer
without handshaking, the bit rate is too fast. The bit rate should be reduced.)

Bad subscript

A subscript that is outside the dimensions of the array, or the wrong number of

subscripts is used.

® The size of array variable elements in a DIM statement is too large.
(Normally, this will result in an OM or OV error.)

® The value of a subscript other than that declared in a DIM statement is used.

® The number of dimensions for an array is incorrect.

CN 17

DD 10

DS 56

DU 60

FC 5

e A subscript with a value greater than 11 is.used without declaration by a DIM
statement.

e A subscript specified as 0 is referenced after execution of an OPTION BASE
1.

® A record number in a PUT% or GET% statement is too large.

Can’t continue

Programme execution cannot be resumed.

® A programme has halted due to an error.

® The programme has been modified after it was BREAKed.

® A programme is not executed.

® An abort has occurred, as key was pressed during I/O operation.

Duplicate definition

An array or user function is defined in duplication.

® An array of the same name is declared without executing an ERASE
statement.

® Undeclared array variables are used and then declared by a DIM statement.

e Attempts to execute an OPTION BASE statement was made twice.

o A DIM or DEF FN statement exists in a loop.

Direct statement in file

During a LOAD or MERGE operation, an unnumbered programme line is read.
e A data file is read.

® A machine language programme is read.

Device unavailable
A device is not available.
® A device which is not connected to the HX-20 is specified.

lliegal function call

A statement or function is called incorrectly.

® A parameter for a statement or function is out of range. (Many functions
cannot be used with a negative or zero parameter.)

e The value of a subscript in an array is negative.

e An undefined USR function is used.

® The number of characters specified in a PRINT USING statement exceeds
25.

® An undeclared array or a variable to which no value has been assigned is
used in a SWAP statement.

® A line number greater than 64000 is encountered during execution of a
RENUM command.

e In a PCOPY command, the specified area is the programme area currently
LOGged IN, or a programme already exists in the specified area, or no
programme exists in the programme area currently LOGged IN.

e Offset of a DEFFIL statement is too large.

® PEEK or POKE is executed against the EPSON BASIC programme area or the
I/O area up to address &H4D.

A-2

FD 55

FN 23

ID 12

IE 54

10 53

IU 59

LS 15

MO 22

Bad file descriptor
A file descripter is incorrect.
® An element of the file descriptor is misspelled.

FOR without NEXT

NEXT statements are insufficient.

® One NEXT statement is shared by two or more FOR statements.

® FOR and NEXT do not correspond one to one. {The control variable name is
written incorrectly.)

Illegal direct

A statement that is illegal in direct mode is entered.

o DEF FN, INPUT and RANDOMIZE statements, etc., cannot be executed in
direct mode.

Input past end

All the data in the file has been read.

® The number of data and the number of variables to be read do not match.

® An attempt is made to read data continuously without using the EOF
function.

Device /O error

An error has occurred during communication with a peripheral device.

® A cassette tape is defective.

¢ The level adjustments of the audio cassette are mismatched.

e The interface conditions of the RS-232C (bit rate, handshaking lines, etc.,) are
mismatched.

Device in use

The specified device is busy.

® Wrong device name.

® The same OPEN statement is executed twice.
e Execution of CLOSE statement is neglected.

String too long
A string is too long.
e An attempt is made to assign a string variable longer than 256 characters.

Missing operand

A required parameter is missing in an expression.

® A full stop is used instead of a comma between numbers.
® An essential parameter is omitted.

A-3

NE 63

NF 1

NO 57

NR 19

oD 4

om 7

0s 14

File not exist

A file does not exist under the specified name.

e A file name is written incorrectly.

e A ROM cartridge that does not contain the specified file is used.

NEXT without FOR

FOR statements are insufficient.

® Incorrect looping is executed.

e Two or more NEXT statements exist for one FOR statement.

e Accidental jump to FOR-NEXT loop from other programme line.

File not OPEN

A file number is used for a file that has not been OPENed.
e A file number is written incorrectly.

e An OPEN statement is not programmed.

No resume

No RESUME statement is contained in an error trapping routine.

e At the end of an error trapping routine, there must be one of the following
statements: END, RESUME, and ON ERROR GOTO.

Out of data

A READ. statement is encountered when there is no data to read.
e The number of data is insufficient.

e A RESTORE statement is incorrect.

e Use of delimiters in a DATA statement is incorrect.

Out of memory

Memory capacity is insufficient.

® A programme is too long.

® A programme has too many variables.

® An array variable is too large.

® Expressions are too complicated.

® A programme has too many FOR..NEXT or GOSUB...RETURN loops.

® The string space or RAM file size specified by a CLEAR command is too
large.

® The address number specified by a MEMSET statement is too large.

Out of string space

A string space is insufficient.
® The string space specified by a CLEAR command is too small.

A4

oV 6

PP 62

RG 3

RW 20

SN 2

ST 16

Overflow

The result of a calculation is too large.

® The result of an operation on integer constants is not in the range —32768 to
32767.

® The result of an operation on real numbers is not in the range —1.70141E38
to 1.70141E38.

e A value in a command using the address as a parameter exceeds the
specified range.

Protected programme

The programme is protected.

® A NEW or LOAD command cannot be executed for the programme in the
area which has been named by a TITLE statement.

RETURN without GOSUB

A RETURN statement is encountered before the execution of a GOSUB

statement.

® Execution is branched to a subroutine by a GOTO statement.

® A subroutine is executed by a RUN command.

® In the absence of an END statement at the last line of the main programme
the following subroutine is executed.

RESUME without error

A RESUME statement is executed when no error exists.

® An error trapping routine is entered by a GOTO or GOSUB statement.

® In the absence of an END statement at the last line of the main programme,
the following error trapping routine is executed.

Syntax error

A programme is not written according to the syntax of the language used.

® A reserved word other than those recognised is used.

® Unmatched parentheses.

® A delimiter is mistyped (comma for full stop, colon for semicolon, etc.).

® A variable name does not start with an alphabetic character.

® A variable name starts with a reserved word.

® The number of parameters for a function or statement is incorrect.

® Unrelated characters are written in the latter part of a line not visible on the
physical screen.

® A string variable is used before the variable name list in a PUT% or GET%
statement.

String formula too complex

A string expression is too complex.

® A string expression written in one line is too long or complex. Too many
nested parentheses are used in a string expression.

A5

™ 13

UF 18

UL 8

UP 21

WE 24

WH 25

Type mismatch

A mismatch in the type of variable.

e A numeric value name is assigned to a string variable.
e A string value name is assigned to a numeric variable.
e A type mismatch exists in the argument of a function.

Undefined user function

A USR function is not defined.

e A variable name starting with “FN” is used.

® The function name in a DEF FN statement is incorrect.

e The DEF FN statement is not executed. (Execution of a programme is started
from the middle of the programme by a GOTO or similar statement.)

Undefined line number

An error in the line number.

® Line number is not specified.

® A line number specified in a GOTO, GOSUB, RESTORE or RUN statement
does not exist.

® The line to be referenced when a RENUM statement is executed does not
exist.

Unprintable error

Indicates an error with an undefined error code.

o An ERROR statement is executed in the absence of any error trapping
routine.

® Error codes 26 to 49 and 64 to 255 will cause this message to be displayed.

WHILE without WEND
® This message is used in Disk BASIC.

WEND without WHILE
® This message is used in Disk BASIC.

— How to Read Error Message Table

SN 2 Syntax error
The programme is not written
according to the syntax.
® A reserved word other than those
recognised is used.

l—Me:aning and explanation of the error message
Error code
Error message

A-6

APPENDIX B

Device Names

Device name Equipment name Input | Output Remarks

KYBD: Keyboard @) X

SCRN: Screen X @)

LPTO: Built-in microprinter X O

- COMO: RS-232C port O O

CASO: Microcassette drive O O Option

CAS1: Audio cassette O O

PACO: ROM cartridge O X Option
A: Flexible disk drive A O O Device
B: Flexible disk drive B @] @] names for
C: Flexible disk drive C O O DISK BASIC
D: Flexible disk drive D O O

O: Applicable x: Not applicable

B-1

APPENDIX C
Correspondence Table between Device
Names and BASIC Commands

Device | KYBD: | SCRN: | LPTO: | COMO: | CASO: | CAS1: | PACO:

Command

LOAD
LOADM
LOAD?
RUN “<file
descriptor>"
MERGE
FILES
INPUT#
INPUTS
FOF

LOF

SAVE

SAVEM

LIST

PRINT# (USING)
POS

OPEN mode

I OO X % X X X X
X X X X

X X X X

(0RO

FrO0000 0000
FOO0OOO 0000

I O00O0
1 OO0

3IOCOX0O|I0O00OX0O Oxx0O
—IXXXXX[O0OO0OOOO Ox

—|x X X X %
OO0 O X OfX X X X X X
OlOO0OO X O} X X X X X X

o
o

NOTE:
O or X used in this table indicates that when a device is specified for a command or
statement, the device

O: Can be used.

x: Cannot be used. An FC error occurs.
—: Causes no error but the command is invalid.

C-1

APPENDIX D Formatting Characters

Format string

Function

Specifies to output only the first character in a given string.

NI Specifies to the number of characters to be output from the beginning
of a given string.
& Specifies the output positions of characters in a given string.
Specifies each digit position.
. Specifies the position of the decimal point.
+ Outputs the sign of a number (plus or minus) before or after the
number.
— Outputs negative numbers with a trailing minus sign.
k% Causes leading spaces in the numeric field to be filled with asterisks.
$3 Causes a dollar sign to be output to the immediate left of the formatted
number.
**$ Causes leading spaces to be filled with asterisks and a dollar sign to be
output before the number.
Causes a comma to be output to the every 3rd digit to the left of the
decimal point.
AAAA

Outputs a numeric value in exponential format.

Outputs any of the above formatting characters as a literal character.

NOTE: The formatting characters shown above apply to the ASCI| character set. If
your selected character set is other than ASCIl, some of the formatting characters
will be output differently as shown below.

U.S.A. | France [Germany |England | Denmark [Sweden Italy Spain
£ # # # Pt
$ $ $ $ $ o $ $
\ ¢ 0 \) 0 \ N
A A A A A U A A

(See Chapter 3 POKE).

D-1

APPENDIX E
Keyboard Layouts and Key Assignments

1. Keyboard Layouts

|
L

RETURN

HOME M INS
NUM SCRN
t

USASCH

BN

D

L

T

HiHH B BB EE NN

caPs L
LOCK

"
2

=EEE

B) (3] 3] 3] (€3 |E3]) (&) (55 [63) 1Y) (0] |EY

= e T T

\J

4

England

I
a

LOCK]

<
o

"
2

2] () (3] 3]) (3] |£2] |0 6N (£ |83 |13 |) [

))

DaoooooouEEEE

E-1

2. Key Assignments for Each Keyboard Mode

(1) Uppercase Mode and Lowercase Mode

USASCII
P [#1 8% |l& [’ ([HY]=-T=T17])
21 3|14|5|6|l7]|8|l9!l0] -]
A
QIWIEJR|[T|Y[U|1]o0o|P|a
+ | %
Als|D|F|lae|H[U| K| L] ;
<>}
Z|X|]c|lv|BIN|[M|[s].]|,
England
Yyl ey s % &’ ([y)Y[=-T=]T4¢] 7T
21314516718/ 9lo0]- 11N
A
QW|E|R|T|Y|]UlI1]o!l P|a
+ | *
Als|D|lFlaea|{H|U|lK]| L]
<[>0 1?
Z X|C|VIBINIM|s]|]|,

(2) Numeric Key Mode

{3) Graphic Key Locations

(E1) | (E2) | (E3) | (E4) | (EB) | (E6) | (E7) | (E8) | (EQ) | (EO) | (AQ) ¢ (7F)

NOTE: EO through E9, A0 and 7F shown in parentheses in the above figure are character
codes in hexadecimal numbers and can be input by pressing the corresponding
keys while holding down the GRPH key. The character codes for * and ~ are 60
and 7E, respectively. (See Chapter 8, “Definition of Graphic Pattern” in the HX-20
Operation Manual.)

E-3

4

3
~
]
In]
o
[
o
@

.
2]
5
0
2
2
3
©
5]
g
=
o~
B
B
z
E
]

F-1

APPENDIX F Character Code Tables

1. USASCII

|92 C : . Cw_l TM_G &.WE\.E ED LLLL 4
1414 8EC (444 1902 06 viL 891 [A 4% 748 ¥6 8L
_L : i 2N L2 Tl el LzEAB.B] o | 3
€6 A Lze |50z 681 €LL Fa:1% Ll £6 LL
o] o] e o] o]] o]] o]] Je] TR T_ (@]] | on |
k4:14 g€ 02 a8l 2L 961 vZL 6 9L
lzez] oez] fozg] [roz] [smi] fect] LA.E-L“ mw_ﬁwl_xl_._bﬁvﬁ,w& =1 T ooir | o
L2 2 T 2 2 0 3 N 3 i 2 23 T3 PP
+ E i A] A ¢ +
[1}14 vee 81z zZ0T 981 oLt 1218 8eL ezl 9oL 06 vL 8S rA4 ol
O L) g 2 5 2 3 23 Y PSP
oz] Jeee] o] hoe[s o] fest] e Teai] leor] fee] lec] o] Tw]] (6T |00, | 6
- & R 1 I 1 6 {
ove] ez foiz] ooz o] eeif fzsif Cleei] loz] o] fee] Clzz] cfes] fov] e] |
o 2, [l r_LxLILml._vl_ 5] [oooL | s
o] uez] Jeiz] o] fem] o] Ba]] len] lee] ee]] Cles| les] e] [|0 | ,
¥+ 4] & L] g 4 ¢
174 0€Z 1 4%4 861 8l 991 oSt vEL 8Ll 20t 98 oL
) 2 R 23 R 3 0 23 8 PP
SyZ 6zZ €17 161 18t SO1 61 €el LLL 1oL S8 69 €9 S
& o B B T TS ST TR, 5T | o | s
e fezz] fee] e Jom] eeifev fzer] lewf “ooi] lee] Hes] es] Tee] oz] v
s B R uLpLol&FL»L v] T oowo | v
o]] Qe o] e oo o] e lan] es [ee] e hs Tt T T T TET o0 | e
¢ s 2 s J £ #
e ozz] o] e[Jec] zo Jem] oe] fen] les] fes] Tee os[Tee] [si] [Z] | 500
O LA QA arz , z
(874 :144 602 £61 LLL [3:1 k148 6cl €Ll L6 18 S9 6v £ L 3
l60z] I wll_mLanLull_,L 1| oo | o
ovz vez 802 z61 m_ 091 H«l; 8zl zZ11 96 08 v9 8p [9L 0
80z] ol_+|1_.n_|_,|_n_ L@I_@I._.ml_ o] | o000 | o
teit {otet | 1ot | oot [Liol | otot | Loot [000L | LLto [oLLo | LOLO | 00LO | 1100 |0L00 | 1000 | 0000 >a.=o_u xwu
i |afla|o|e|v | 6|8 clols | v e z| 1L |o0] N

2. ENGLAND

{ <

o

XaH

o 2 g 28 3 3 - 2 23 1 YR
vae] leee] ez WQIA jost] [t] e mw_l_- vwE.e o] | Ec. ‘mw._z mwl_A 2 I N R T3 I PSR
esz| |eez] |izz] fsoz| lest| fect] est . i - c @_E Em EE P.W_u BI cay e] 1011 a
)) 2) 3 W) 2 3 3 B PSP
2 G) 2V . 21 3 3 g 21 3 g 3 T Py
23 e)) 3 0 M 23 T 2 3 R I3 PR I
6vz eez] |ciz] [woz] |sst] |eet 8,) BF.. 1zl . mopﬁ B} Mml_m Em\ En [sz] 16] 1001 6
eve] leee] for] fooe] Jear[[sor Nm_w@r@xgr_m_x BIEme& &] oo0L | 8
3) 2 2 g) 3 0 3 2 0 AP
i) 2 0 3 3 3 N 23 R R PO
vz 6zz| |e1z| |264] |18L] |so1 mﬁ_« e tF_._ Lot R m__.._ Em m_m.. ENE El 1010 S
2] Jezz| [zse] feel] josi] lwel wim um_; m:u. 001 o Hmc:. m._o m_v E&E K3 0010 N
eve| lezz] fue] leer] ec] esy Vio m,(__. E mﬂumﬁm Eo ﬁmm_uml; el] oo | g
ave] |oze[o] frer] er] feoy EO EF EL |m.m(_ﬂ EN_ BMEN&:E 2] 0100 z
we| Jsee| Jeoz] fes Je] o] fant ¥ E;.. =4y Em EG lmw_a. Bﬁ 2 . e]] L000 L
ovz| |rze] Jeoe] fesi] eu ool Eo wﬁ+EmmW._~Em E@B@Mm_n_m@_ o] 0000 | O
LiLL |OLLL | LOLL {OOLL |LLOL | OLOL | tOOL | 00OL | LLLO |OLLO | LOLO | OOLO | LLOO |OLOO | LOOO | 0000 rm.,w_w_ xwu
4|3 |a | o] a 6 | 8| ¢ | 9| s | v | €|z _ "ON

F-2

3. FRANCE

[
o~
~N

02

<o
(2]
-

—
-
-

sez| ez s Bl o 8 Bo:&l_.whﬁxnﬂ EX RN I
S
vee] e zzz[feoz] Jom] foey] @_“‘E_@N_..E.LE.QE,&EAB.B] oy | 3
£T 244 S02 68 € €6
o] ese]] awe] - em] o]] e CAMCI SIS I C1 INC2 N G2 C T
o
jse| oee] oze] eozf lemi] eui] BaE-EJEﬁBuEJEVEAE 2] Toou | o
152 sez] lewe] feoz] [ea] ur] fesi] lem] e [eos] (w67 [se| [es] fev [|| [u]
VB[R A e[At + Lo | 8
I
osz| |ree] leig] [eogf femi] oui] L 2 D 2 X) 1 P 2 C2 B K B Y
oz] Jeee] el pe fs] e[s o] e e Cfee] Hec] lus] lw] sl l6 [00, | 6

A 1 1 & 1 = 4
ovz] fzee] ez] ooz emi]fenr] [esi] Cleer] “foa] leo] les] lee] fes] lov]] [s] |99, | 8

L L * Yy X H g)

[2 24 84 2124 661 €81 {91 31 gel 6L £01 L8 \L a8 6¢ [24 L

] i =Y N Y YW M3 R 3 3 U VP
mvwx_ 0ge vic 861 [4:1% 991 0st veL 8iL 0t 98 172 ¥S 8¢ zZ 9
B ;l_m | n urI_D Ln_ LmLﬁL 21 Jowo | o
] feze] e[e hs] e[ev lem] Jen] fio] fes] o] fes] lee] Tie] [s]

P s 03 Fe . 00 | §
wef ez o] feer] om] o] levi] fees] fou] “fooif Tee] Tee] fes] fee] foz] v]

4 Pl A b £ 0010 | ¥
@@E@EEEETEEEEEEE&:oom
B * s 2 s J £ #

B oze| oz 6L 8Ll z91 9:0 on—..r vl J ml_n_ B.m louLm .m\m._N E.. st [z] 0100 z
(824 [:144 602 €61 LL) [£+] GP1 621 4N L6 \8 69 (514 ee 4} 3
we] eze] Jeoe] fes [ear] o] N erLGLqLﬂL,L] T wooo | o
.ovlu._ vZe 802 61 9Ll 091 1441 mNZ AT 96 | 08 v9 -1 ze gl 4]
0|_+|Ln_|_.|_.n_Lm.ll_ml|_n_mll_ o] 0000 0
Lttt oL | tore | oot 1L0L | OLOL | LOOL | 000L | 11LO |OLLO | LOLO | 0010 |LLOO |0LOO [LO0O | 0000 | 4. N xwu
N
173 | a o |8 |V 6 8 L 9 | S v | ¢ z L 0 | oy

F-3

4. GERMANY

Y) g 21 g - 3 .2 23 [3 Y, TV
vaz| legz| leze] jeoz] oer] [wer] [ssL . NS— wﬁm_ oLt u E{ m|n_z EA EX . joe | vt] oLLL 3
3 e) 23 23 23 1 23 2 B X PTO
3) 23 3 3 i) 2 2 1 T
s e 2 2 3 23 3 2 A2 T QPO B
(kx4 vez 81z zoz| jgsL ot vm,ﬂ 8e1] .mmw_N wop.ﬁ EN ..v~|_h w|m_“ B*ml_ E Lol v
A s g 2 g 3 3 i 3 5 3/ 6 B T e
s o B = g O) A S 2 B 3 N B T B
ez] Jree] [az] feer] est] ot E#%L_LE_BE_m.ESEm_m_NB“E | LLLO /
o = 3y) 2 1 3 0 3 N3 I3 R 0 PV
A i) Y 3 -3 3y -3 3 PSP
CRER o S TN R R C R NGl e a3 TR O
i 5 7 Y) 3 3 W 3 B 3 B 3 R 3 R TP
2 o) s g 3) 3 N) 3 B 3 B E R 3 R Y e
2 70) 2 2 g 0 2 2 R 3 T
ovz| |vez] soz] |zel ort] [oat 3;0 ,m~|;+ N:n_w_v En_ h_m MP_QE%E (o] 0000 0
vt Lous | rore Lot [ieor | ouon | toot [ooot | tiio [orio | 1010 | 0oto | Lioo |otoo | tooo | 0ooo am.:o_m an
a3 la|o|a|v | 6| 8| | 9|s | v |c [z || 0] N

F-4

5. DENMARK

[1e]
i
o~

D
d
o~

©
o~
o

™~
[
I

et]

B
H

S

il
3]
s

~
N
-

™
-
-

*XoH

- 4
e Y8 0 R 0 2) B T3 B TP B
}4°14 8ET (444 902 6 851 144 9zt 6
o6t vel - d - - o:_u_ ||_..... !wlhl_z W@l_A B . B_ E O—:‘ m
S0Z 6! € L
ese] ese] izl Jsoz]ewi]fert] LT O Y 2 8 2 B 2 I % I PV
[4:14 9¢ 02 88 ZL oGl +Z 9
(zsz] Josz] oze] [roe] o e La@.l;amw_ﬂw&ubl_ﬁv;ﬁ“ﬁ = ool | o
ps | Jeez] leie] feoe] st] femi e ear] e CTwe] fscf Cfes] lev][] [u
" ml_ﬂ.]_V.Lm:.ll_v—l_ul‘_l_.’_ L 1101 q
0SC 1474 812 20z 981 oLL vsi 8€lL (441 901 06 174 85 (44 o1
¢ L ﬁLanL"L*E 1 Towr | v
2] feee] Jug e emi o] est] ee] i] o] e] fee]] fw]] (8T [0 | 6
& 1 " I & 1 £ {
ove] [eee] Joiz] oo ve] fssi] fesi] Cleei] oz o] e “fec] e o] Tee [
.4 L X 4 XLI ’_ml._ul._ l_ 000t 8
we e g ee] fem] o] s e en] Cleo] (] T Tss] le [lee] [[0 |,
¥ 4 m E M & e ¢
oz _ 0€T 1 4¥4 861 [A:18 991 oSt 143 8LL 0L 98 oL !
jovz] CE M Ay ETI +|_.,.LH_B@E“E 2T Too | o
174 (144 14¥4 L61 [%:18 G91 (3343 g€l Ll 10l <8 69 €9
lsvz] Jeze] ¢ _ n wl_.n_ |||._w LmENE <] 1010 [
re]] Jeie] o] omi lver] evi feer] o] foor] Tve Tes] lea] “fee] oz | v
o |20, B T pLoLvLaL v T oo | v
o] Jeee] e e] oo o] e e Heo [ee[o] s e T TS TTET g0 | g
* s 2 5 J < 4
v 9zz [11%4 61 : 74 291 2141 oglL 1413 86 [4:4 99 0s e 8t [4
2 I 2 LD 0 8 1 3 3 i Y 3 Yo
ive o144 602 €61 LLL 191 Ghi 6z1 1438 L6 i8 S9 6v £ [} i
e0z] g6 o 12 vLmLGLngLmL 1 | tooo | &
ove vzz E m__ E_ 091 E 8zl ziL 96| |[o8 v9 8 [9L 0
o||_+|Ln.||_,|_m L@L@L%L o] 0000 0
teee {owet | tore [ootl {1101 | 010t | LOOL | 000L | LLLO [OLLO | LOLO | 0OLO | 1100 {0100 (1000 | 0000 am.co_w_ xw__.,“
113 |a 2| a | v | e 8 | ¢ 9 | g v | e | ¢ L 0 ON

F-5

6. SWEDEN

sse] Jeez Jeee] Jeoz] her] fuy] @_HE.E A3 N 0 P 1 R 2 A IR ETH B UV
vez] feez] ez feoz] fom] [va] s [em] foas] fou C[we] lec] fes] lev[lee| e |5, 5
-] n u i N < :
jese] [eee] uze]eoe] fea] feut] E”“.M;I__..Ew@em_uﬁzﬁnﬁlm_ =T T | a
ese] [oe] [oze] [wz] e [ea] fesi] “lom] e feor fas] fec] foo] few] fez]fz]
+ R e U e ¢ oL | 9
152 asz] |ez] |eoz 181 v lssi N mrﬁ mﬁw 01 A _|m._.m~ Ex Imml_m B...tﬁl_ M LLoL g
B X r z ¢ < f : *
G2) R U O TV T 1 7 7 . R D 2 O P23 A 2 g €2 B L [(P T
& | " I & & 14
jove] feee] lewe] o] fomi] e @u@rﬁxﬁcﬁxlﬁxm_mﬁuﬁ 2] [oooL | 8
o] el s feoi] [em] o]] Clee] len] leo [es] e cfes] e e o]l |,
¥ 4 (] =3 M g 4 ¢
oz 0z viz 861 z8L 991 m_._m vmr_ w:} zol u_.m__»_ Eu Ew MﬂwB (9] 0L10 9
we| [eee] [oz] (o] [mi] e] Jevy] Cfee] fenf hof e feo[fes]]] ls]
P s n 3 g o 1010 | S
E 8z z1z 961 08L b9l E zeL oL 001 v8 89 z§ 9 0z v
EZ2 N I X A O T mLL LuLnLkLoLanL T 1 oo0 | v
%74 Lee Lz 561 6LL £91 iyi et S1t 66 £8 L9 1S =1 6l €
I 3) 3 5 8 S 3 1 3 -3 P X 3 QY P
o] ezl o] el el e on] on] | o] fee] feo] EIPCICI Y 21 | owo |
844 144 60C €61 LLl 191 *12% 6Cl gL L6 i8 59 517 £e Ll L
jszz] eoz] o|_._. wll_ml_all_nfl_ﬁlfll_] 1 vooo |t
ove vee 80C 6t 9Ll 091 124} 2141 ZLL 96 08 Y9 8r (4 9l 4]
> ez = o|_+LmeLm I(_wLml_n_mL o] | ooco | o
it tote rore loott (1ot | oot | 100t | 000L | LLLO [OLLO | LOLO | 0OLO [1100 [OLOO | LOOO | 0000 zm.:o__m_ xwu
N
4 3 | a b g v 6 8 L 9 g v £ z | 0 ol

F-6

7. ITALY

56z 652 £z B& 161 g1 651 vl Lzt F:.u lmml_l mlLO E. E E E LLLL 4
I T L] < /
vae] lese] ece] Jeoz] fosi] vel] @,E.wedozcﬁ EzEAE.E Tow | 3
o Y v v
L1 s it 6zl 601 £6 i 19 oy 6z £l
) ez 3) 38 8 3 3 53 IV I
3 I o) 2 3 3 R 0 3 3 Q3 P e
baz .mtm_ mm_ wml_ L8t E mm|L.+ @ﬁ gzt Ex E EJ. m_... B...E E LLOL 2]
m. L3 # -
0sz veZ 81z z0z 981 oLl vmpﬂ)] NNFN Eﬁ E.u Eh Imml_. .mw._* wlm_ E oLoL v
. [N -
2 [2 [U %) C T R CT B CT) g 1 Em@HE}EHEmmABB oL | 6
4 I 1
ove] Jzee] Joi] fooz] emi] eoi] jzsy] @r,@x@c@xﬁ:&mﬁuﬁ 2] | oooL | 8
-] .
o) L]] fea] e] hs] e fen] oo leal fue] o fse] el e le Ty |
+ 4 & <
ovz oge vz 861 z81 991 WLN wmp_ mCD NSFED Eu E.w w’n_wE b 0110 9
sve] jeee] [eiz] o] fei] eoi] m:qmw_uE:EmW_:BmEmENE 1 1o | s
ve] lezz] ei] feer] omi] i Jov] W_L wg«@_u;&h@oﬁvﬁaﬁ v] | oo0 | v
]

Lez 1z 561 61| |col w1 o GIL 66 €8 9 15 M_ ml; b 0
(3 a3 7 R 0 T I C I T E I I P oo |
[4%4 9zz 01z v6lL 8L1 z91 9:. om..r viL j 1w|m|_n Bm MW_m bml_N Nﬂ: E .Ml_ 0100 z
1z szz| [evz| |est L N Syl . mE.ﬂ gLl .u.‘mw_m EG Imw_a Eﬁ E, o] 1] 1000 L
o] o] feoc] ee] feu] oot ow] @rﬁa,&a el PRl gl o ted oo | o

‘ON | oN
vere oLy ftotr | oot {LLOL | Q101 | LOOL |OOOL | LiLO |OLLO | LOLO | 0010 | 1100 |0LOO0 | LOOO | 0000 Aeuig | xaH
113 | a > | a8 | v | 6 8 | ¢ 9 | g v | g | ¢ L 0 xwu

F-7

8. SPAIN

sz .mnN €2z Loz 161 B 65l , vl . Lz :_0 B_I m’iﬁ. Wmi_.w E\E st] LLLL 4
lvez] Jeee] [ezz] oo 061 Ll 851 vl 9zL ou] [v6] fsc| Jea] o[foe [[o1] oLLL 3
= I W U W N ¢ .
R B S 2 A 3 i 3) 2 R €2 B2 N R T
esz] Jose] oze[roe] e eci] slﬁ.ﬁ_-mp_mﬁ_ﬁﬁmﬁ._@vﬁ,uu 2T T oo | o
(2 I T I G I T R mml__.b. wm__m 'ml,_.. E_v_ el .ﬁl_x.m_m el el fu oL | 8
05z veZ 81z zoz 981 oLl va« el) NN_N E.ﬁ EN Ew Mm,!_“ E* E E oLoL v
£ azf fwez] e8] e €51 1zl 68 €L 6
ove] esz] o] Tiog] fsm] eet] memﬁl_.n.@_ﬁ’_}LHEmEAB 6] L1001l 6
8vz eez] |oiz| looz[[wsi] [sor zall jeel z oL) zL 95 ov vz 8
2) o A 3 2323 2 2 8 R
el Qse] [aig] eoi] [em] o] fiss] ees] Jen] feor] fu] “fss] e fee] fef 0],
¥ 4 " € M g 2 ¢
99
ovz oez| [viz] [sel] [zt t olm;m em,_ 8l N No_u. ED Bn_ me_m. Ewﬁ EX 0LL0 9
soz] lee] eiz] feo] De] eei]evi] fee] o] Lo fes] es| fes| el lie] []
¢ - Fn s g g e 010 | §
roe] lezz] ei] o] lom] eer] fevi] el feu] “fooi] fvef “fee] fze] fee | fee [v] T 50,0 [
B 4 4 3 2] i g v 7
o]] g o]] e o] el e tee] eal feo] he] e T LET] oo | e
, ¢ s 2 S J £ Yy
Zve 9zz oz vel] [st] [eel EO on..._. vl j ED Ew_ '@m EN H.nl_: sl [z] 0100 z
iz gzz| [eoz] [est] (et [io] ewi ezt eul (6 18) v €e I L
oo] 2et] ¢ = v!mLanLﬁL,I_ 1] w00 | o
ovz| |vez| |soz| [eet ou| oot luwt sz et % 08 9 v ze ol |o
jove] o] oL+|_m|_,|_mLm_LaL%l, o] | oooo | o
"ON ‘ON
LLtL (oLl | LOLL | 0OLL [LLOL | OLOL | LOOL | 000L | LLLO {OLLO | LOLO { 0O0LO | 1100 [OLOO | LOOO | 0000 Areuig | xaH
N
u_i. 3 a 0 e v 6 8 L 9 S 4 € 4 i 0 xaH

F8

APPENDIX G Control Codes

Decimal|[Hexadecimal Function Keys
1 01 Moves the physical screen to + A
the left corner of the virtual
screen.
3 03 Escape AUTO mode. +C
4 04 l\aoveshthe physical screen to +D, +
the right.
5 05 Deletes all characters to the +E
end of the line.
6 06 Moves the physical screen to +F
the right corner of the virtual
screen.
8 08 Backspace +H,
9 09 TAB (spaces every 8 columns) + 1,
10 0A Line feed +J
11 0B Moves the cursor to its home + K, +
position.
12 ocC Clears the virtual screen. + L,
13 oD Carriage return + M,
16 10 Moves the physical screen up. + PG
17 11 Ic\i/loves the physical screen +Q, + SN
own.
18 12 Insert mode [CTRL EN:W SHIFT EX
19 13 l\éIO\l/efs the physical screen to +8S, +
the left.
22 16 Turns the cursor ON. &G + v
23 17 Turns the cursor OFF. | CTRL ER%W
26 1A Deletes all characters from the +7Z
cursor position to the bottom
: line of the virtual screen.
28 1C Moves the cursor to the right.
29 1D Moves the cursor to the left. [7]
30 1E Moves the cursor up. +
31 1F Moves the cursor down. +

Character codes 0 to 31 are not displayed as characters even if they are in an output statement.
However, if they are included in a string, each character code will be counted as a one-character
length.

APPENDIXH Memory Map

0ooy

d444L

¢ uoneinbyuon

4449

0oov

Z uoneinbyuo)

L uoneanbyuon

4449

J44a

ooov

4448

Mun uoisuedxy

vy ut-ing

INOY uoisuedx3y

WOY JIsve

WOY JISvd

loHUOW pue
sauINoJ O

103997

EEELS

4449

d444L

44449

4444

0000
alempiey O/ avoo
(1) Ba1e oM O/ 4200
(L) eate jom JiSve 4400
(2) ease
RoMm O/} ‘101U V50
() eRde YJOM DISVE
J4EV0
abenbue| aul ww_m
.......... R R NE L E
(seaJe awwelboid g)
eaJe 1xa) diseg
‘\/‘\(
©oIR HORIS ‘D|RUBA
ease bulig T_<m._o
u93IoS |BNUIA v_.:b_>>
voiC Ol WVH [}HV3TD
(oISva sia) 444¢€

02-XH 0 8Inso[dua uley

H-1

ABS
ALL
AND
ASC
ATN
AUTO
BASE
CDBL
CHR$
CINT
CLEAR
CLOSE
CLS
COLOR
CONT
COoPY
COs
CSNG
CSRLIN
DATA
DATE -
DAY
DEF
DEFDBL
DEFFIL
DEFINT
DEFSNG
DEFSTR
DELETE
DIM
ELSE
END
EOF
EQV
ERASE

APPENDIX |

Table of Reserved Words
ERL LPRINT
ERR MEMSET
ERROR MERGE
EXEC MID$
EXP MOD
FILES MON
FIX MOTOR
FN NEW
FOR NEXT
FRE NOT
GCLS OCT$
GET OFF
GO ON
HEX$ OPEN
IF OPTION
IMP OR
INKEY$ PCOPY
INPUT PEEK
INSTR POINT
INT POKE
KEY POS
LEFT$ PRESET
LEN PRINT
LET PSET
LINE PUT
LIST RANDOMIZE
LLIST READ
LOAD REM
LOAD? RENUM
LOADM RESTORE
LOCATE RESUME
LOCATES RETURN
LOF RIGHTS$
LOG RND

LOGIN

RUN

SAVE
SAVEM
SCREEN
SCROLL
SGN
SIN
SOUND
SPACES$
SPC
SQR
STAT
STEP
STOP
STR$
STRING$
SUB
SWAP
TAB
TAN

 TAPCNT

THEN
TIME
TITLE
TO
TROFF
TRON
USING
USR
VAL
VARPTR
WEND
WHILE
WIDTH
WIND
XOR

‘ APPENDIX J
List of Commands and Statements

AUTO [<line number>][[<increment>>]}
To generate a line number automatically.
AUTO 100, 10

AUTO 200,

AUTO 300

AUTO

CLEAR [<character area size>{, <RAM file
size>l}

To initialize variables and to set the size of the
character area and the RAM file.

CLEAR 200, 256

CLOSE[[#]<file number>[,[#]<file number>...]]
To close. file{s).
CLOSE #3

CLS
To clear a text screen.
CLS

COLOR [<foreground color>][,[<background
color>][,<color set>]}

To specify the screen colors of the external
display.

COLORO, 3,0

CONT

To resume the execution of a programme that has
been stopped.

CONT

copy

To output the characters and graphics displayed
on the LCD, on the built-in microprinter.
COPY

DATA <constant>[,<constant>...]

To store the numeric and string constants that are
accessed by the READ statement(s).

DATA HX, 20, EPSON

DEFFIL <record length>>, <relative address>

To define the relative address of record 0 in a
RAM file and the length of a single record.
DEFFIL 20, 200

DEF
FN<name>{(<parameter>[,<parameter>....])]
=<function definition>

To define a function created by the user.
DEF FNZ(X, Y)=Xk2+Y %3+A

—_

DEFINT/SNG/DBL/STR

DEF | INT | <rangels) of letters>

SNG

DBL

STR
VGRS To declare variable types as integer, single
precision, double precision, and string.
AL DEFSTRAX-Z

DEF USR

ISR DEF USR[<digit>]=<starting address>
RGeS To specify the starting address of a machine
language subroutine.

SINNIaY DEF USR6=&HOCO0

DELETE

[ZIGUEYM DELETE [<starting line number>][— [<ending line
number>1}

To delete specified programme lines.
LGN DELETE 100200

i
|
c
Bl
Rl
=]
7
m

DELETE 100—
DELETE -200
DELETE 100
DiM
LY DiM<variable>{<maximum subscript
value>[,<maximum subscript value>...J)[....]
MG To declare the size of array variable elements.
DIM A(40, 10), B$(50)
END
END
SIS To close all files and terminate programme
execution.
END
ERASE
ERASE <array variable>[,<array variable>...]
To eliminate arrays from a programme.
ERASEA, B

ERROR

[CLIVINM ERROR<integer expression>

USRI To simulate the occurrence of an error; or to allow
error codes to be defined by the user.
[T ERROR 2256

EXEC

GIVEYM EXEC [<starting address>]
[ASIOE] To start execution of a machine language
programme.
WA EXEC &HOCO00
FILES
FILES[" <device name>"]
[AYGEI To display the names of all files residing on a
specified memory device.
FILES "CAS1:"

FOR...TO...STEP-NEXT

FORMAT FOR <variable>=<initial value> TO <final
value> [STEP <increment>]

NEXT [<variable>[.<variable>]]

To allow a series of instructions between FOR and
NEXT statements to be performed in a loop a
given number of times.

FOR 1=0TO 100 STEP &
NEXT|
GCLS
GCLS
To clear a graphic screen.
GCLS
GET%
GET% <record number>,<variable
name>|[,<variable name>...}
To read data from a RAM file into variables.
GET% O, A!, B#, C$
GOSUB...RETURN

GOSUB <line number>

RETURN
To branch to and return from a subroutine.

GOSUB 500
GO TO/GOTO

FORMAT (1) GO TO <line number>, or
(2) GOTO <line number>
[¥ORT To branch programme execution to a specified

line number.
GOTO 300
IF..THEN...ELSE/IF...GOTO...ELSE
IF <expression=>
THEN|<statement> [ELSE |<statement>>|]
<line No.> <line No.>
GOTO <line No.>
To choose a particular route for programme
execution based on conditions established in an
expression.
IF A >10 THEN A=0 ELSE 200
INPUT
INPUT [“ <prompt string>"|; |<variable>
[.<variable>...] '
To allow input from the keyboard into a specified
variable during programme execution.
INPUT"NAME"; A$
INPUT#
G INPUT# <file number>, <variable>[, <variable

YILOETEl To read data items from a sequential file and

assign them to programme variables.
INPUT#1, A, B, C$

J-2

KEY

KEY <key number>, <string>

To define the programmable function keys.

KEY 1,"LIST"

KEY LIST/KEY LLIST

(1) KEY LIST
(2) KEY LLIST

LRSI To output the strings assigned to the

programmabie function keys on the screen and
the microprinter, respectively.

KEY LLIST

LET

FORMAT
PURPOSE
EXAMPLE

[LET}<variable>=<expression>
To assign the value of an expression to a variable.
LET A=3.141592

FORMAT LINE[{<horizontal coordinate 1>,
<vertical coordinate 1>)]—-{<horizontal
coordinate 2>, <vertical coordinate 2>),

PSET |[.<colour>}

PRESET
To draw a straight line between two specified
points.
LINE(0.0)-{119,31),PSET

PURPOSE

EXAMPLE

FORMAT LINE INPUT [“ <prompt string>"; }<string
variable>
To input an entire line to a string variable.

LINE INPUT "WHAT?";A$

PURPOSE
EXAMPLE

j c
£ 2
m m
2
b
(=
=5

-
F
m
=
°
[
-
£

LINE INPUT#<file number>,<string variable>
To read an entire line from a sequential data file to
a string variable.
LINE INPUT #1, A$
LIST/LLIST
(1) LIST[<starting line number>][-[<ending line
number>]j
{2) LLIST[<starting line number>J{—{<ending line
number>]]
To output a programme list (1} on the LCD or
external display or (2) on the microprinter.
LIST 100200
LIST —200
LIST 100—
LIST 200
LIST
LIST

LIST <file descriptor>

LIST<file descriptor>[,[<line number>] [-[<line
number=>[j]

To output a programme list into a specified file.

LIST “COMO:”

*LIST “COMO:”

LIST"COMO:[(<BLPSC>)]"L [<line
number=>][-[<line number>]f}
To specify the interface conditions of the RS-232C

port and execute LIST.
LIST"COMO:(2701B)"

LOAD
FORMAT LOAD[«file descriptor=[,RI
VS To load a programme file into the memory.

LOAD"CAS1:PROG1.ASC”
*LOAD “"COMO:”

LOAD" COMO:{{<BLPSC>}]"
To specify the interface conditions of the RS-232C
port and execute LOAD.
LOAD"“COMO:(68N2B)"[,R]
LOADM
[GITNE { OADM<file descriptor>](.[offset vaiue][,R]]
VORI To load machine language programme file into the
memory.
[ECWIEYS LOADM”CAS1:ABC”
*LOAD?
LOAD?[<file descriptor>]
To check fites.
LOAD?"CAS1:PROG1.ASC”
*LOCATE
[[eENIE LOCATE<horizontal coordinate>,<vertical
coordinate> {,<cursor switch>]
To- specify the cursor position on the screen.
LOCATE 10, 10,0
*LOCATES
LOCATES <horizontal coordinate>, <vertical
coordinate>
[IGEET To specify the position of the physical screen.
[SNEE LOCATESOQ, 0
*LOGIN
LOGIN <expression>[,R]
To switch the programme areas.
LOGIN3
*MEMSET
MEMSET [<bottom address of memory>]
To specify the lower limit of the memory.
MEMSET &HODOO
MERGE
MERGE [<file descriptor>[,R]]
To merge a specified programme file into the
programme currently in memory.
“CAS1:PROG3.ASC"
*MERGE “COM0:”
MERGE “COMO:[{<BLPSC>)"LRIl
To specify the interface conditions of the RS-232C
port and to execute MERGE.
MERGE"COMO: (68N2B)",R
MID$
MID$ (<string exp 1>,<n>[, <m>])=<string exp
2> where n and m are integer expressions and
<string exp 1> and <string exp 2> are string
expressions.
To replace a portion of one string with another
string.
MID$(A$,2)="BASIC"

J-3

MON
MON
[QVGIESEI To transfer programme control to the machine
language monitor.
[2YVIEY MON
MOTOR
MOTOR [<switch>]
[SPEEOEIA To turn ON/OFF the motor of the external audio
cassette.
[FIEEE MOTORON
*NEW
NEW
[[VCLEI To delete the programme in the memory and clear
all variables.
NEW
ON ERROR GOTO
ON ERROR GOTO <line number> .
To enable error trapping and specify the first line
of the error handling subroutine.
ON ERROR GOTO 1000

[=]
2
]
]
[72]
[
o
g
=]
4
[}
[=]
-
o

ON <expression> | GOSUB | <line number>
GOTO

{.<line number>...]

To branch to one of several specified line
numbers.

ON A GOSUB 100, 200, 300, 400
ON B GOTO 100, 200, 300, 400

OPEN

OPEN"<mode>", [#] <file number>, <file
descriptor> .

To open a specified file for 1/0.

OPEN"O", #1 "CAS0:TEST.BAS”

*OPEN“COMO:")

OPEN “<mode>", [#]|<file number>,
“COMO:[(<BLPSC>)1"

To specify the interface conditions for
RS-232C port and execute OPEN.

OPEN “O”, #1,”COMO:(68N2B)"

OPTION BASE :

IEESEIYER OPTION BASE |0|

1

To declare the minimum value for array variable
subscripts.

OPTION BASE 1

*PCOPY

PCOPY <expression>

To copy a BASIC programme into another
programme area.

PCOPY 3

*POKE

POKE <address>, <numeric expression>

To write a byte into a specified memory location.

POKE &HOCOO, &H39

PRESET

PRESET (<horizontal coordinate>, <vertical
coordinate>>}

To erase a dot on a graphic screen.

PRESET (40,25)

PRINT/LPRINT
' PRINT [<expression>[|, |<expression>“.]]
LPRINT N

SEEEEE To output data on the screen or the built-in
microprinter.

PRINT “EPSON”
PRINT USING/LPRINT USING

IPRINT USING <format string>;

‘ LPRINT
{<expression>[|;'[<expression> |

To output strings or numerics using a specified
format.

PRINT USING “####"; AB

*PRINT#

PRINT# <file number>, [<expression>...]

To write data into a sequential file.

PRINT#1,AB8

X
|
2
=
*
c
1]
2
7]}

FORMAT PRINT #<file number>, USING<format
string>;
[<expression>[|;j<expression>...]]
[SEIRTA To write strings and numerics into a sequential file
using a specified format.
[ZEWIINE PRINT#1, USING #4447, A
PSET

[NSLIENMN PSET (<horizontal coordinate>>, <vertical
coordinate>){,<colour>]
To draw dots on a specified graphic screen.

PSET (30,20}

PURPOSE
EXAMPLE

*
9
[=
-5
£

[ASIEYM PUT% <record number>,
<variable>[,<variable>...] -
dBSETl To write the values of variables into a RAM file.
2GR PUT%0, A!l, B#, C$
RANDOMIZE
RN RANDOMIZE [<expressions]
To reseed the random number generator.
RANDOMIZE
READ
_ READ<variable>[,<variable>...)
To read values from a DATA statement and
assigning them to variables.
READA. I, C$
REM
RN REM{<remark>]
To allow explanatory remarks to be inserted in a
programme.
BTN REM COMMENT MESSAGE
RENUM
RENUM [<new number>]{,<old
number>]{, <increment>]]
To renumber programme lines.
EETVENE RENUM
RESTORE
IGEGIVENMN RESTORE [<line number>}
To allow DATA statements to be reread from a
specified point.
BTV RESTORE 1000

RESUME
BROGITTNEN RESUME [|NEXT]
<line number>
L'GLIETH To continue programme execution after an error
recovery procedure has been performed.
RTINS RESUME 100
RUN
NSLTUEYE (1) RUN [<line number>], or
(2) RUN <file descriptor>[,R]
QAL To start programme execution.
[2EVIITHR (1) RUN 300

. (2)RUN"CAS0:PROG4.ASC”
RUN“COMo:"

RUN“COMO:((<BLPSC>)]"[.R}
LRI To specify the interface condition of the RS-232C
port and execute RUN.
MZTNIIN= RUN"COMO:(68N2B)"
SAVE
SN SAVE <file descriptor>[,Al{,V]
[{VTF{ W To save an EPSON BASIC programme on a
specified file.
SAVE“CASO:ABC”
*SAVE“COMO:"
[LeGIVEYEE SAVE"COMO:[(<BLPSC>)]". A
AR To specify the interface conditions of the RS-232C
port and execute SAVE.
WL SAVE"COMO: (68E13)".A
*SAVEM
[N SAVEM <file descriptor>,<top
address>,<bottom address> <execution
starting address>(,V]
SR To save the memory contents on a specified file.
RTINS SAVEM“CAS1:ABC”, &HOBGO, &HOCO0,
&HOBOO
*SCREEN
SCREEN <text>, <graphic mode>
To specify the text or graphic screen modes.
SCREENO,2
*SCROLL
SCROLL[<speed>][,<mode>[,<scroll step
X>,<scroll step Y>>}
To specify the SCROLL function of the physical
screen.
SCROLL9,0,10,4
*SOUND
SOUND <tone>,<duration>
To sound a specified tone.
SOUND 10, 10
*STAT
STAT [[ALL 1
<expression>
To display the status of each programme area.
STAT3
STOP
STOP
To terminate programme execution and return to
command level.
STOP

SWAP

[eEIISEll SWAP <variable 1>, <variable 2>
EESAl To exchange the values of two variables.
BEENE SWAP AS, BS

*TITLE

TITLE <programme name>
To name programmes.
TITLE"TEST 1"
TRON/TROFF
TRON
TROFF
To trace the execution of programme statements.
TRON
TROFF
*WIDTH
WIDTH <characters per line>, <number of
lines> [, <scroll margin>]
To set the size of the virtual screen.
WIDTH 20, 25,5
WIDTH <device name>
WIDTHl"LPTO:” . <number of digits>
“COMQO:"
To set the print width of the printer.
WIDTH*LPTO:", 20

S

ND

G \WIND[<counter value>]
SEESEA To control the microcassette drive for fast forward
and rewind.
YT WINDO
Functions
ABS
GENE ABS(<numeric expression>)
VEEEEEN To return the absolute value of a numeric
expression
VNS A=ABS(-1.6)
ASC
FORMAT ASC(<string>)
GOLGORE To return the character code of a character.
ST A=ASC("A"}

>

TN

ERIENE ATN(<numeric expression>)
EVEASS To return the arc tangent of a numeric expression.
[FYENS A=ATN(0.5)

CDBL

[eGIENEl CDBL{<numeric expression>)

LRI To convert integers and single precision numbers
into double precision numbers.

[EEWENE A#=CDBL(BY/2)

CHR$

FORMAT CHR$(<numeric expression>)

ENELE To return the character corresponding to a
specified character code.

[SYNETE A$=CHR$(&HA41)

CINT

FORMAT
PURPOSE

EXAMPLE

Q
[}
(7]

FORMAT
RPOSE
EXANMPLE

CSNG

FORMAT
PURPOSE

o
[

EXAMPLE

CSRLIN

FORMAT ,
PURPOSE

EXAMPLE

DATES$

FORMAT
PURPOSE

EXAMPLE

AY

FORMAT
PURPOSE

EXAMPLE

4]
b |

FORMAT

EXAMPLE

FORMAT

PURPOSE

T 3 BE
S [y £
= m 3
2 R o
m 2 m

XP

FORMAT
PURPOSE

EXAMPLE

FIX

FORMAT
PURPOSE

Ul
>
pod
2
]
[
m

GINT{<numeric expression=>)

To convert single and double precision numbers
into integers.

A%=CINT(B#/2)

COS (<numeric expression>}
To return the cosine of a numeric expression.
A=C0S(3.1415926/2}

CSNG(<numeric expression>)

To convert integers and double precision numbers
into single precision numbers.

Al=CSNG(B#)

CSRLIN

To return the vertical position of the cursor on.the
virtual screen.

Y=CSRLIN

DATES [=MM/DD/YY]

To set the current date in, and return the date kept
by, the internal calendar clock.

PRINT DATES

DAY

To set the current day of the week in, and display
the day of the week kept by, the internal calendar
clock.

PRINT DAY

EOF(<file number>) .
To return the end-of-file code.
|F EOF(3) THEN CLOSE #1 ELSE GOTO 100

ERL

ERR

To return the error code of an occurred error and
the line number where the error occurred.
A=ERL

B8=ERR

EXP (<numeric expression>}

To return the value of an exponential with e as its
base.

A=EXP(1}

FIX (<numeric expression>)

To return the truncated integer part of a numeric
expression.

A=FIX(—B/3)

FRE OCTS$
FRE{<expression>) OCT${<numeric expression=)
To return the size of an unused memory area. To return a string which represents the octal value
PRINT FRE(0) of the decimal argument.
PRINT FRE("A$") PRINT OCT$(123+456)
HEX$ *PEEK
HEX$(<numeric expression=) PEEK(<address>)
To return a string which represents the To return the byte read from a specified memory
hexadecimal value of the decimal argument. location.
A$=HEX$(65535) A=PEEK(&HOC00) |
INKEY$ POINT |
INKEY$ POINT(<horizontal coordinate>, <vertical |
To return a one-character string of the pressed coordinate>)
character key or a null string if no character key is To return the status of a dot at a specified location ,
pressed. on the graphic screen.
A$=INKEY$ PRINT POINT{100,10}
INPUTS POS
INPUT$(<number of characters>L.[#]<file POS(<digit>)
number>)) To return the horizontal position of the cursor on |
To return a string of characters read from a the virtual screen or the horizontal position of the |
specified file. printer head. 1
A$=INPUT$(5,#3) X=POS(0)
INSTR RIGHTS
INSTR{[<numeric expression>, }<string 1>, RIGHT${<string>, <numeric expression>)
<string 2>) To return an arbitrary length of string from the
To search for the first occurrence of one string in rightmost characters of a string.
another string and returns the position of the PRINT RIGHTS$(*ABCD".3) |
searched string. ‘
B=INSTR(AS,"XYZ") RND |
INT RND[{<numeric expression:>}] |
To return a random number.
INT(<numeric expression>} A=RND(1}
To return the largest integer value (truncated). SGN
PRINT INT (~B/3)
SGN{<numeric expression=}
LEFTS$ To return the sign of the value of a numeric
LEFT$(<string>.<numeric expression>} expression.
To return an arbitrary length of string from the B=SGN(A)
leftmost characters of a string. SIN
B$=LEFT$(AS.4)
LEN SIN{<numeric expression>) .
To return the sine of a numeric expression.
LEN({<string>) PRINT SIN(3.1415926/2)
;orir:gefurn the total number of characters in a SPACE$
A=LEN(A$) SPACES$(<numetric expression>)
To return a string of spaces of a specified length.
LOF A$="A"+SPACES(10)+"C"
LOF (<file number>) SPC
To return the size of a specified file.
A=LOF(3) SPC(<digit=>)
To output a specified number of blanks.
LOG PRINT SPC(10); "A”
LOG(<numeric expression>) SQR
To retum the natural logarithm of a numeric
expression. SQR{<numeric expression>} _
PRINT LOG(2.7812818) To return the square root of a numeric expression.
A=SQR(2}
MID$
MID$(<string>, <expression 1>[,<expression
’ 2>))
To return an arbitrary length of string from a string.
B$=MID$(A$.2.3)

J-6

miw
X|c
B

O
o
mjm

qII%

[t
[
o

<III

STR$(<numeric expression>}

To return a string representation of the value ofa
numeric expression.

A$=STR${123)

STRINGS (<integer expression>,

<string expression>)

<numeric expression>
To return a string of specified characters.
PRINT STRING$(10.65)

TAB(<numeric expression>)

To space to a specified position on the line where
the cursor is currently positioned.

PRINT TAB(10}; “ABC"

TAN{<numeric expression>}
To return the tangent of a numeric expression.
A=TAN(3.1416/4)

TAPCNT

To return the value of the microcassette drive
counter.

PRINT TAPCNT

A=TAPCNT

TIME$="HH:MM:SS”

To return the time kept by the internal calendar
clock.

PRINT TIMES$

USRI<digit>}{<argument>}

To call a machine language subroutine defined by
DEFUSR statement.

A=USR 1(B)

VAL{<string expression>}

To return the numerical value of a string
expression.

A=VAL("—123")

VARPTR(<variable name>)
To return the address of a variable or array.
PRINT HEX$(VARPTR(A)

EPSON OVERSEAS MARKETING LOCATIONS

EPSON AMERICA, INC.
3415 Kashiwa Street
Torrance, CA 90505 U.S.A.
Phone: (213) 539-9140

Telex: 182412

EPSON UK LTD

Dorland House

388 High Road,

Wembley, Middlesex, HA9 6UH,UK
Phone: {(01) 900-0466/7/8/9

Telex: 8814169

EPSON DEUTSCHLAND GmbH
Am Seestern 24

4000 Dusseldorf 11

F.R. Germany

Phone: (0211) 596-1001

Telex: 8584786

	./brm0-01.tif
	./brm0-02.tif
	./brm0-03.tif
	./brm1-00.tif
	./brm1-01.tif
	./brm1-02_1-03.tif
	./brm1-04_1-05.tif
	./brm1-06_1-07.tif
	./brm1-08_1-09.tif
	./brm1-10_1-11.tif
	./brm1-12_1-13.tif
	./brm1-14_1-15.tif
	./brm1-16_1-17.tif
	./brm1-18_1-19.tif
	./brm1-20_2-00.tif
	./brm2-01.tif
	./brm2-02_2-03.tif
	./brm2-04_2-05.tif
	./brm2-06_2-07.tif
	./brm2-08_2-09.tif
	./brm2-10_2-11.tif
	./brm2-12_2-13.tif
	./brm2-14_3-00.tif
	split_brm3_Redacted.pdf
	./brm2-14_3-00.tif
	./brm3-02_3-03.tif
	./brm3-04_3-05.tif
	./brm3-06_3-07.tif
	./brm3-08_3-09.tif
	./brm3-10_3-11.tif
	./brm3-12_3-13.tif
	./brm3-14_3-15.tif
	./brm3-16_3-17.tif
	./brm3-18_3-19.tif
	./brm3-20_3-21.tif
	./brm3-22_3-23.tif
	./brm3-24_3-25.tif
	./brm3-26_3-27.tif
	./brm3-28_3-29.tif
	./brm3-30_3-31.tif
	./brm3-32_3-33.tif
	./brm3-34_3-35.tif
	./brm3-36_3-37.tif
	./brm3-38_3-39.tif
	./brm3-40_3-41.tif
	./brm3-42_3-43.tif
	./brm3-46_3-47.tif
	./brm3-48_3-49.tif
	./brm3-50_3-51.tif
	./brm3-52_3-53.tif
	./brm3-54_3-55.tif
	./brm3-56_3-57.tif
	./brm3-58_3-59.tif
	./brm3-60_3-61.tif
	./brm3-62_3-63.tif
	./brm3-64_3-65.tif
	./brm3-66_3-67.tif
	./brm3-68_3-69.tif
	./brm3-70_3-71.tif
	./brm3-72_3-73.tif
	./brm3-74_3-75.tif
	./brm3-76_3-77.tif
	./brm3-78_4-00.tif

	split_brm4-5_Redacted.pdf
	./brm3-78_4-00.tif
	./brm4-01.tif
	./brm4-02_4-03.tif
	./brm4-04_4-05.tif
	./brm4-06_4-07.tif
	./brm4-08_4-09.tif
	./brm4-10_4-11.tif
	./brm4-12_4-13.tif
	./brm4-14_4-15.tif
	./brm4-16_4-17.tif
	./brm4-18_4-19.tif
	./brm4-20_4-21.tif
	./brm4-22_4-23.tif
	./brm4-24_4-25.tif
	./brm4-26_4-27.tif
	./brm4-28_5-00.tif
	./brm5-01.tif
	./brm5-02_5-03.tif
	./brm5-04_5-05.tif
	./brm5-06_5-07.tif
	./brm5-08_5-09.tif
	./brm5-10_5-11.tif
	./brm5-12_5-13.tif
	./brm5-14_5-15.tif
	./brm5-16_5-17.tif
	./brm5-18_5-19.tif

	split_brmA-J_Redacted.pdf
	./brmA-00.tif
	./brmA-01.tif
	./brmA-02_A-03.tif
	./brmA-04_A-05.tif
	./brmA-06_B-01.tif
	./brmC-01_D-01.tif
	./brmE-01_E-02.tif
	./brmE-03_F-01.tif
	./brmF-02_F-03.tif
	./brmF-04_F-05.tif
	./brmF-06_F-07.tif
	./brmF-08_G-01.tif
	./brmH-01_I-01.tif
	./brmJ-01_J-02.tif
	./brmJ-03_J-04.tif
	./brmJ-05_J-06.tif
	./brmJ-07.tif

	Blank Page
	Blank Page

